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Abstract- In this paper, the dynamic analysis of a kind of
impact vibration system with clearance is carried out. A
theoretical model of six-dimensional three-degree-of-freedom
collision system is established according to engineering
requirements. The collision equation is analyzed by modal
analysis method, and the periodic solution of the system is
obtained. The stability problem of the system is transformed
into the discussion of Poincaré mapping by using Poincaré
mapping. By finding Jacobi matrix of Poincaré map at the
fixed point, the critical parameters of bifurcation are obtained.
Using numerical simulations, the characteristic curves of
period doubling bifurcation of the system under certain
parameters are drawn, and the period doubling bifurcation
points of the system are found.
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. INTRODUCTION

Nowadays, the non-linear impact vibration system with
clearance is widely used in practical engineering field, such as
impact centrifugal dehydrator, vibrating sand blasting machine,
vibrating roller, pile driver and so on. However, in the other
part, the repeated impact vibration of parts contacting,
detaching, re-contacting and re-detaching may lead to the
damage of machine parts, for example, in nuclear reactor, the
repeated collision of fuel rod and reactor shell may lead to the
wear and even damage of heat exchanger tubes.

In addition, impact vibration can also cause environmental
noise pollution, such as the working environment of forging
factories. In the high-speed operation of trains, the collision
between wheels and tracks will not only affect passengers'
riding experience, but also threaten the safety of the train.
Therefore, the research and control of the non-linear impact
vibration system have theoretical significance and practical
value.

At present, in the field of vibration system with clearance,
many scholars at home and abroad have carried out exploratory
research. Impact collision will lead to discontinuity and strong
nonlinearity of vibration system with clearance, which makes
its dynamic characteristics complex and changeable. Li and
Tian [1] established a kind of single-degree-of-freedom elastic
collision system based on the rear axle leaf spring system of

vehicles. The Poincaré mapping method was used to analyze
the system. It was proved that there were periodic doubling
bifurcations and almost periodic bifurcations in the vehicle leaf
spring system, and the evolution process of periodic motion to
chaotic motion was presented. Zhu and Shen [2] took a
piecewise linear system as the research object, and found
bifurcation and chaos phenomena through related calculation.
The cell transformation method is used to analyze some system
parameters comprehensively. The attraction domain of the
attractor is drawn and the existence of Smale horseshoe is
proved. Zhao [3] established a two-degree-of-freedom bilateral
collision system under harmonic excitation, deduced the
parameters of analytical solution and its existence conditions,
and analyzed its response. Shaw [4] discussed the chaos and
long-period motion of a class of linear oscillators with single
degree of freedom. Li [5] analyzed two single-degree-of-
freedom relative impact vibration systems and obtained the
existence criterion of subharmonic motion and the stability
condition of periodic motion using Jacobi matrix eigenvalue
method. Foale [6] found that the discontinuity of vibro-impact
system can lead to bifurcation, which cannot be classified by
common bifurcation analysis theory. Luo [7] took the two-
degree-of-freedom system with clearance under periodic
excitation as the research object, and analyzed the relationship
and matching between dynamic behavior and parameters of the
system.

With the deepening of theoretical research, the application
of mechanical systems with clearances and impact vibration
systems is also rapidly developing. However, these studies are
basically theoretical analysis and numerical simulation of
single-degree-of-freedom or two-degree-of-freedom systems,
and few studies on multi-degree-of-freedom and high-
dimensional complex systems. As the degree of freedom
increases, the system will have complex bifurcation and
singularity problems. Therefore, it is necessary to study the
dynamics of multi-degree-of-freedom systems.

In this paper, a three-degree-of-freedom mechanical vibro-
impact model with clearance was established. The model is
solved by modal analysis method, and the approximate
analytical solution of the model is obtained preliminarily.
Then, considering the perturbed periodic motion of the model,
the expression of periodic mation is derived from the known
momentum transformation equation and boundary conditions.
According to the expression, the Poincaré mapping and the
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corresponding linearization matrix are obtained. Finally, the
data simulation of the system is carried out, and the
characteristic curve of the period doubling bifurcation of the
system under certain parameters is made by Matlab and Maple,
according to the period doubling bifurcation theorem, and the
period doubling bifurcation point of the system is found.

1. PHYSICAL MODEL AND MOTION EQUATION OF
VIBRATION COLLISION SYSTEM WITH CLEARANCE

We consider a three-degree-of-freedom collision model
with clearance, as shown in Fig. 1.
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Figure 1. Three-degree-of-freedom vibro-imapct model with clearance

The masses of the three oscillators are M,,M M,
respectively, which are connected by the linear spring with
stiffness Kl,Kz,Ksand linear dampers with resistance
coefficients C,,C,,C, . Each oscillator moves in the Yy

direction and is subject to
P sin(QT +17),i =1,2,3.

periodic  forces

The collision occurs when the displacement difference
between the oscillator M, and the oscillator M, is the gap

A . After collision, the velocities of the three oscillators
change, and then they move at new initial velocities, colliding
again, forming periodic motion.

Before the oscillator collides, the dimensionless differential
equations of M M, and M, motion can be expressed as
follows:

When X, —X; =0 , the impact equation of block M, M,
is as follows:

Xy + fyo Xy =Xy, + 4%,

Collision recovery coefficient R satisfies

R = X3+ — X1+
X1+ - X3+
Where X, , X, X, ,X,, denote the impact velocity in the
forward and afterward collision time.

Dimensionless constants are as follows:

b = g =2 g = e S

mi Ml’ ci Cl' ki Kl' 2 KlMl’

XI XiKlaflo_E’w:Q &’t:T &,
F)0 0 Kl Kl

Where X; and X; denote the first derivative and the second

derivative of the displacement X; of the oscillator M, for
time t are expressed respectively.

I1l.  MODAL ANALYSIS
Let g, (t) =u,f (t), j =12,3 be the synchronous solution
of the system and U i be a set of constants.
Its regular modal matrix is:
u® u® u®
[u] :[{u(l)},{u(z)},{u(3)}:| — Uz(l) u2(2) u2(3)
u,® u,® u®
Its regular mode equation of motion is as follows:
[M, Ha®3}+[C, Ha®3}+[K, Ha®)}={Q, (O}
Where [M r] represents the regular modal mass, [Cr]
represents the regular modal damping, [Kr] represents the

regular modal stiffness, and{Q, (t)}represents the generalized

1 0 0 X 1 -1 0 ||x L . . .
N excitation force train vector in the regular modal coordinates,
0 u, O [§%,+25-1 1+pu, O |1X _ . ;
0 0 u.llx 0 0 ull% thatis Q, (1)} =[u] {f,, (). f, @), F5 )} .
1 -1 0% fo We assume that the damping in the model is proportional,
+ =1 14+p, 0 |{x,p=1 0 psin(at+7) that is [c] = a[m]+ﬂ[k]. Energy loss occurs during the
0 0 L || % f collision process, which is determined by the collision recovery
(1) coefficient R, and the collision duration is ignored.
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That is to say, the regular modal damping is:

cC, 0 O
[c]=[u] [c]u]=| 0 ¢, O
0 0 C
[2y,0M, 0 0
= 0 2y,0,M, 0
L O 0 2y,0,M,
(27,0, 0 0
= 0 2y,0, 0
0 0 2y,m,

Where o, , @, , @, is the natural frequency, y,,7, ¥, is the
regular modal damping ratio, that i

2
+
y 2GEPO 103
2m

r

IV. PERIODIC MOTION AND POINCARE MAPPING

By means of modal superposition method [8], the general
solution of equation (1) can be obtained:

X =

ue™"" (a; cos myt +b; sin w,t)

+ A sin(wt+7)+B; cos(wt+7))

Me

3
% = > ue™((bjm, —an; )cos m,t

i

—(aja)dj +b;7; )Sin a)djt)

+ Aja)COS(a)t+r)— Bja)sin(a)t+f))

)

Where 7, = &, =,}a)j2—77j2,j =1,2,3, and b are

the integral constant determined by the initial conditions and
modal parameters of the system, Aj and B jare the amplitude
constant, and

Periodic Conditions of Vibration Motion in System
Collision:

X, (0)=x,2nz/ w)=x,,%,(0)=x,2n7z/ ) =X,
X,(0)=x,2nz | w) =X,
X,(0)-x,(0)=6,X, (0)=X, 2nz/ @) =X,

1-u4 R 1+R

X, (0)=—2" % (2n7/ w) +MX'37(2H7Z/60),
1+, 1+u

; -R u.—R

X,,(0) = X, (@2nz | o)+ ———X,_ (2n7z | ).
1+u . 1+u .

@)

Based on (2) (3), the equation of impact vibration system
can be expressed as follows:

3

X =y ule ™ (a; cosayt +b; sin yt)
=i
+ A, sin(wt +7,)+ B, cos(awt +17,))
3

% = > uP(e "((b;a, —a;n; )cos gt
=
—(aja)dj +bj77j)sin [N,

+ A, cos(at +7,) - B,wsin (ot +7,))

Define sectiono ={(x,,X,,X,,X,,x,,X,,0)} e R°xS,
X =X, =0, % =X, % =X%,,0=ct,S =Rmod 27

Taking o as Poincaré cross section, the mapping is
established as follows:

X' '=f(&X) )

Where - is bifurcation parameter,

X = (X, X, » Xo0r Xogs Xa, » To) | TEPresents a fixed point on

o — o Poincaré cross section, and satisfy. X and X' satisfy
A = jz -F, X =X "+AX ,X "= X +AX ' denote perturbation in
(a)f —a)z) +(2771.2a)) motion. From the previous analysis we can derived, when
om0 X, —X; <&, the motion with perturbation of the system can
B, = > > F, be expressed as follows:
2 2 2 za))
(a’j @ ) +( m
3 .
Where F, = > u"f, .
i=1
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3
% = > ue ™ (a; cosmyt +b; sinwyt)
=

+ A, sin(wt +7,+A7) + B, cos (ot +7,+A7))
3
= 2 uP(e (b, —am7,; )cos wyt
j=i
—(aja)dj +b;n; )Sin (oMY,

+ A, Cos( ot +7,+A7) - Bwsin (ot +7,+A7))

For perturbed motions, we assume that when M, and M,
2Nz + A6

collide, t=0, when they re-collide, t, =

)
AO = A7’ — At boundary constraints of equation (1) (2)
collision motion:

%,(0) = Xyq +AX,5, %, (0) = X, +AX,,,
%, (t,) = X, + AXjo, %, (t,) = X +AX]
,(0) = x20+Ax20,>‘<1(0)=x20+Ax20,
, (1) = X, + AXy, X

><1

><l

5 (1) = X0 + AXy,
%5(0) = X5 + AXyy, ~3 (0) = X,, +AX,,,
(L) = Xy + AXYy, %, (1) = X, + AX]_,
%,(0) - %,(0) = %,(t.) — X, (t,) = 6,

X (t,) = s (t.) = X, (1) — s (t,):

By substituting the condition of t =0 into formula (4), the
undetermined parameters can be obtained:

.1
8 = 5 (U0 —UUs7) (g o) = (WU5Y —uPu?)

b = ((U (2) (3) _

Da)m

(3) (2) ; ;
u3 )(771)(10 +771AX10 + X, FaX,,

(U (Z)U (3) U (3)

U)X + 17, 8% , + X, +aX )
~uPu®? —uPu)(mx,, +max, +X,, +aX,,)
-D(A,w+nB,)cos(r, +ar) + D(B,w—1n,A ) cos(z, +ar))

~ 1
b, = ———((UPuf? -

2
P o
- (u1(1)u£3) - ul(s)uél))(ﬂzxso 18X + X, +a%5,)
- D(A,w+1,B,)cos(z, +a7)

+ D(B,w—1,A,) cos(z, +a7))

ugl)uég))(ﬂzxm +17,a%, + X, +aX,)

@),,3) 7 v
U3 ) (77, X0 + 775 8 Xg0 + Xog +aXg0)

(S

=7 (PU? —uPu Y x, +max, + X, +aX )

a)d 1

@, (2) 1
—(Uu,"u,” —u,

) s )X, +n,aX, + X, +aX
- (u1(2)u2(1) - ufl)uz(Z) )(773)(30 T aXy, + X3+ +aX 3+)
-D(A,0+n,B,)cos(r, +ar)
+D(B,w—n,A,)cos(r, +ar1))

D is the module of regular modal matrix[u .

By substituting the condition of t =1, into formula (4), the
undetermined parameters can be obtained:

3 . 3 .
Zul(”vj (te) - Zus(’nvj (te) = 5
j=1 j=1

Its Poincaré mapping X' = (&, X) is:

3 3
(g ; % g
D (@3 X, +aX, =Y uv (t) X, +aX,, =) u,’v (t)
(Xzo"'AXzo) (U () )ué))(xso +AX30) 10 10 z: 1 Vj\te 20 20 ; 2 Vij\le
— DA sin(z, +a7) — DB, cos(z, +a7))
, +aX o Zu(”v t,)
S (P U (kg )~ (U ~uPu) 1 3
/um3 1)~
(x20 +aXy) = (UPULD —uPuP ) (Xyy +aXsy,) Xy, +aXj, T+ u IZ;“ () +
S
— DA, sin(z, +a7) — DB, cos(z, +a7))
0 2 0 #m3(1+R)ZS: M ©)
.1 1+ - Vit
a, =B((u§1)u3‘2) —uPu)(x,, +ax,) ’um =
X, +aX Zu(”” t,)+
@, _ @), ® 3+ N
—(U,"uy” =uTu 7 ) (X FaX ) +u, S
@), _ 0@
= (U;7uy” =u U, ) (X g, +aX ) U, —R W% ()
— DA, sin(z, +a7) — DB, cos(z, +ar)) lp, 55 ° 0
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a7’ =27 +20(aX 108X, 18X 508X 0 ,8X 4, ,AT)

The expressions of the parameters in the formula are as
follows:

~ -n:it [ ~ = .
vi(t)y=e" (aj cos w,t+b; sin a)djt)
+ A, sin(wt+ 17, +a7)
+ B, cos(wt + 17, +a7)
~ -n;t = o~
vi(t)=e" ((bja)dj —ajnj)cos%t
—(éja)dj +bj77j)sin oyt
+ A jwcos (ot + 7, +a7)
—B,wsin(wt + 17, +a7)
Define function

g (AXjLo yAX1, 18 Xp0,8 %50, Xg, ,aT,00)
3 3

= Zul(”vj (t.) —Zué”vi (t,)-o
-1 -1

The conditions for the existence of periodic motions from
fixed points are as follows:

0

g (AX10 18X 1, 18X 50,8X 50,8X 5, ’AT’A9)|(0,0,0,0,0,0,) =

Assuming that, according to the existence theorem of
implicit functions, we can obtain and satisfy.

Thus, we can get the expression of Poincaré mapping:

AX}y = T, (AXyg, A%y, , AXyy, Aiyg, AX,, , AT, AB) — X,
= (AXyg, AX;, , Aoy, ARy, AXy, , AT)

AX,, = f,(Axy, A%, , AXyy, AXyg, AXy, , AT,AO) — X,
=N, (AX, AX,, , AXyg, AXyg, AXy, , AT)

AXy, = F,(AX, A, , AXyg, ARy, AX,, , AT, AO) — X,y
=N, (AXp, A%, , AXyg, ARy, AXg, ,AT)

Ay = F,(Axyg, AX, , AXyg, Ay, AXy, , AT, AD) — Xy
=N, (AX, AX,, , AXyy, AXyg, AXs, , AT)

AX, = T (Axyg, A%, , Aoy, Ay, AXy, , AT, AD) = X,
= hy (A%, A%y, , AXyg, AXyy, AXy, , AT)

+

Simplify this mapping to
AX'= (&, X)= X" =H(¢,AX)
Where

(H(<,0)=0)

AX = (AXlO,AX'H,AXZO,A)('ZO,AX3+,AZ')T
AX "= (AXl’O,AX'l,+ ,aX Z'O,A)('ZIO,AX:,:Jr,AT')T
H({,AX)=(h,h,,h;,h,,h, h).

Therefore, the Jacobi matrix mapping at the fixed point can
be abbreviated as D, f (¢, X *) = DH (¢,0).

108X, 8K 0 ,8X 08X, ,AT)T with

Represent AX = (aX
AX :(AXl,AXZ,AXS,AX4,AX5,AX6)T , We can obtain:

oh _of of a9 /ag
OaX, 0al 0OaX 0a0

Oa X
Let

3, =u7ug” —uu? ay, = —(u%uy” —uPug?),

a; =—(UPuy” —uPuyY), 8y =uug —uug?,

8, = —(uuf’ —uPug?), a, = ~(uPuf? —ufuf?),

8y = Uy u;” —uus” ag, = —(u’us? —uPu),

8y, = —(u7ug” —uPug?), by =uul® —uPui?,

b, =70 ~uu) by, = ~uf —u)

o =uu —uu® by, = —Pu? —ufu?),

b, =~ —uu) by =uful? —uful,

_ D, (2 (2),, (D _ (2), @ ®,,(2)
bsz __(ul U " —U; U )'b33 __(ul u,” —u;u, )

(=2

So the Jacobi matrix [9] is

D, f(£,X")=DH(¢,0)
_Mll Nll Mlz N12
E, E, E, E, E,
MZl NZl MZZ N22 N23 QZ

U21 l'jZl lJ22 U22 U23 P2

LGl L61 LGZ L62 L63 |66 J({,0,0,0,0,0,0)

AT = AO(AXy, ARy, , AXyy, ARy, Xy, AT, AO) + AT Where
= hg (AXyq, A%y, , AXyy, AXyg, AXy, , AT)
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-nit ~ . ~ ~ ~.
a. = ”(—a.smco.t +b. cosw,t. +4. cosw,t +b.sma).t) 1 n, . .
i i dive T dite © dite © ) dive —a,, ,—'qu represent the coefficient of aX, in the
D Do,

+ A, c0s(a0+ 1, +a7)— B, sin(a0+7, +47) _
integral constant.

d; = ef’“te((ﬁja)dj -am; )(—sin @yt +C0S a)djte)

3
(i) (i)
. ~ . Z(ul —U, )‘01
~ (804 +by7; )(cos oyt +sin oy, ) o :ium oG 02
p p i i
—Aja)sin(m9+ro +aT)+ Bja)COS(m9+r0 +47) 1= W
iy 1 3
B =e""| a,cosmyt, +—b,n, sinwt W 0
g dj*e @y jq'7] dite , Z:(u1 —u, )goj
P = ZU(J) (p —a - i=t
. o 1 i p - p J ]
B, =" —bysinayt, - W
a)dj
_ At _ 3 ) A
Vi =¢ " ((bgn, —agn; Jcos oy, i 2 (u -u e,
() i-1
1 ) Q = Zu Q. —a. -
8,04 +—bgn” [sinwyt) ET w
a)dj

- 1 . 3 . )
. njte 2 (J) (i)
v, =e i {qunj Cosa)dj'[e—w—qur]J Slna)djte] 1 | Z(ul —-u, )ﬂjq

di

0= e"’i‘e((—Aj cos(z, +at) + B; sin(z, +AT))COS gt
+((Aj0+n,B,)sin(z, +a7)

. Z(um—um)ﬂ
~(B,0-n;A,)cos(z, +ar))sin wyt,) N 1 3 /P

iiu“) ,B _a . i=t
+ A c08(z, +a7) - B, Sin(z, +a7) S o Rl w

. - jte -

@; =€ (C (Ajw+n;B,)sin(zr, +at) i(ufj)—uéj))ﬁ,—q

. 13, . —

—(Bjo—1n;A)sin(z, +a7) @y UPQ:BZUE’J) v —a 2 =
j=

— (A, cos(r, +a7) + B, sin(z, +a7) ) ,) cos ot

(]

—((—Aj cos(z, +a7) + B; sin(z, +AT))(0dj

ZS:( (1 u(J))

j=1
W

Yia ™%~

+((A,@+1;B,)sin(z, +at) U, = L3

—(Bjo—n;A)sin(z, +a7)) npsin wyt,)

—Awcos(z, +a7) — Bwsin(z, +ar7)

e

3
W =" (u? —uf? (e ™" (- &; sin wyt, +Db; cos eyt

j=1
+d, cos ayt, +b; sinwyt)

+ A, c0s(20+ 1, +a7)—B;sin (a0 + 7, +4a7))
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— 1_/um3RU
1+/um3
1_:um R . Hn (1+ R) 1

=7 U+ U,,
+/um3 1+1um3

1 /umSR Pl /um3(1+ R) P3

1+/um3 1+/um3
1-R U+ H.s—R

1+/um3

1q 1q 3q

19

I13

= U
% 1+ /um3 . 1+ :um3 *
1-R . H.—R .
3 =7 U+ T—U,,
1+;um3 1+/um3
— -R
|33: 1-R Pl""lums Ps
1+/um3 1+/um3
ZS:( () u(J))
ly, =1- -2
66 W
: (1) (1)
Zl:(u J —Us J )ﬂjq
_ =
L6q = W
: (1) €)]
2w A
_ =
qu = W

V. EXISTENCE OF PERIOD-DOUBLING BIFURCATIONS IN
IMPACT VIBRATION SYSTEMS

Assume that a fixed point of map is

X" :()(10,)'(10,)'(2+,X30,)'(30,2'0)T

and the characteristic polynomial of the linearized matrix
D, f (£, X ") atthe fixed point is:

f.(A)=2"+a2’ +a,4" +a,4’ +a,4* +ad +a;
Where &, =&, ({).

Lemma 1[10]: If the characteristic polynomial coefficient
of D,f (&, X ") satisfies the following conditions at the
bifurcation point§ = &,

A. Eigenvalue assignment:

gl(:)zl_a1+a2_a3+a’4_a5+a6:0 )

9,(¢)=1+a +a,+a,+a, +a,+a, >0 ©)

1_3-2 -8 -8 -a& g

-a, l-a, a-a a-3 a
%)= -a& l-a, & a, |>0

—8 & 0 1 &

—a, 0 0 0 1

l+a, a+a, a,+a, a,+a, a,+a

a, l+a, a+a, a,+a a,
9,()=| a s 1+a, a a >0

8 3 0 1 &

a 0 0 0 1

95(¢) =1-a,—a, —2a; —a’ —a; +a,a, +a.a,
+a,a; +a,8, +a,a, +a.a; +a’ —2a,a.a, +a,a’
—a,a.,8, — a2a52 +2a,a,a, +2a,a.a, + 8,a,a,
—8,8,8; — 28,8,8; — 8,8 +8; — 83 + 8,88,
—a;a; +a,a; —aaa, +a,a,a; +aa.a;
+8,8,8,8, —a/a; —8/a,8; +a;a; >0

96(¢) =1+a; +a,—2a; —a; —a; —a,a, + a3,
—8,8; —q,d; — 3, — a—sae2 - a;' + 2a4a5a6 - a3asz
-a,a,a, —a,a; +2a,a,a, +2a,a,a, +a,a,3,
—q,8,a, + 2a1a2aa + a12a5 + ag + a3a§ - azasag
-aja; —a,8; + 8,88, —2,3,8; +8,3,3;
+2,8,858, — 88 — 88,8 — & a8 >0

9,(¢)=1-a,-a; +aa, >0
9,(¢) =1+a,—a; —aa, >0

B. Transversality condition

! ! ! !/
-a +a, —a, +a
a3 4 5 6 ;to

—a +a,
h =
(€) —6+5a —4a, +3a, —2a, +a,

V1. NUMERICAL SIMULATION
Let

e =Lty =, =L 5 =2,
—25 0.01,f , =0.2, :

1710

f -0.2,f,=02,R=08,0=2

and its regular modal matrix is:
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0 -0.8507 -0.5257
0 -0.5257 0.8507
0.3333 0 0

Natural frequencies @, , @, , @, are 0.4714, 0.6180 and
1.6180, respectively.

n =[0.2222£,0.3820£,2.6180¢]

!
\J0.2222 - 0.0494¢*

o, =| /03820 - 0.1450¢*

\/2.6180 - 6.8541¢2

F =[0.0667,-0.2753,0.0650]

According to Lemma 1, we study the period doubling
bifurcation behavior of a collisional vibration system.

As shown in Fig. 2, when ¢ = ¢, =0.33425, condition

(5) ensures that there is a real eigenvalue, condition (6-12)
ensures that other eigenvalues are in the unit circle, condition

(13), h(&)=h(¢,) = 0.66581 = O ensures that the velocity

is not zero when the eigenvalue and its parameters change
across the unit circle.

So the period doubling bifurcation will occur when
¢, =0.33425

¢

2
1
g (t)
0 . . . . : . . {
lj___//ﬁ'ﬁf 0.3324250 03324255 0.3324260
g
47248
g(t) 4
47240
: : ; . . . . . . . . . . . . . . . . . !
03324240 03324245 03324230 0.3324235 0.3324260
€
1.1198 x 10%7
() 1.1196x10:_
11194 x 107
1.1192 x 1077
T T T T 1
03324240 03324243 0.33242350 03324255 0.3324260
9
13206 x 107
£(0) | 5301 x 10
13198 x 10%
: : . . . ; . . . . ; . . . . ; . . . . i
03324240 033242435 03324250 03324255 0.3324260
9
3.087 % 1018
2,(C)  3.086x 101
3.0835 x 1018
: : . . . ; . . . . ; . . . ‘ ; . . . . i
03324240 03324245 0.3324250 03324255 0.3324260
9
2755 % 10182
g(E) 2734x 101
2753 % 10184

T T
03324240 0.3324245

T T 1
0.3324250 0.3324233 0.3324260

4

Figure 2. Characteristic curve of double period bifurcation

VII. CONCLUTION

In this paper, the theoretical model of a three-degree-of-
freedom mechanical impact system with clearance is studied,
and the regular modal matrix of the system is obtained; the

International Journal of Science and Engineering Investigations, Volume 8, Issue 92, September 2019

general solution of the system equation is obtained by means of
modal superposition method; the Poincaré mapping is
established, and the characteristic polynomial is obtained by
means of Jacobi matrix of Poincaré mapping at the fixed point,
and then the parameters of the bifurcation are discriminated by
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using the double-period bifurcation theorem. Finally, numerical system with a clearance. “ Nonlinear Dynamics, 78st ed. vol 4. 2014,

simulation is carried out by Maple to verify the theoretical PP, 2577-2604.

analysis results. [8] G.J.Zhao, G. Liu, L. Y. Wu, “Acoustic-solid coupling noise simulation
and experiment based on modal superposition method,” Mechanical
Science and Technology, 26st ed. vol 12. 2007, pp, 1633-1636.
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