

56

International Journal of

Science and Engineering Investigations vol. 8, issue 92, September 2019

ISSN: 2251-8843 Received on September 6, 2019

Tailored Dijkstra and Astar Algorithms for Shortest Path Softbot

Roadmap in 2D Grid in a Sequence of Tuples

Erenis Ramadani
1
, Festim Halili

2
, Florim Idrizi

3

1,2,3
Department of Informatics, Faculty of Math and Natural Sciences, University of Tetova, Tetovo, North Macedonia

(1erenisramadani@gmail.com, 2festim.halili@unite.edu.mk, 3florim.idrizi@unite.edu.mk)

Abstract- Artificial Intelligence conveying the Data Mining
and Machine Learning are the top trends recently that have
been researched, not only in the world of IT. Shortest path
problem is one of the most commonly used algorithms in
several solutions, and through this paper, we are trying to
provide additional information about the technologies, methods
and their accuracy in implementing shortest path algorithms, in
this case – Dijkstra and Astar algorithm for finding the shortest
path. Both algorithms, Dijkstra and Astar, are used in this
paper, trying to provide a comparison between their
performance and accuracy in solving the shortest path between
multiple nodes in a given 2D grid, where nodes are represented
by tuples, which in fact are a given location in the grid

Keywords- Dijkstra, A*, Astar, Algorithms, Shortest Path

I. INTRODUCTION

The data flow era we are facing lately, is bringing a lot of
challenges amongst all of its advantages. Managing, storing or
studying these data are just some of the challenges enterprises
are facing. According to [1], 90% of the total amount of the
data in the world has been generated in the last two years. And
we are a live proof of how fast this is still growing. But,
luckily, most of these data are used for improving human life in
order to make it easier by trying to provide everything a human
being needs in everyday life. As a result, for example, we
recently have autonomous cars: all it takes is the driver to set
the destination, and the car, in a much safer and faster way,
will send him there. Although this is still in “testing” mode,
and most of us are not yet comfortable trusting a machine
doing “what we have to do”, in a very short period of time, this
will become a reality. Considering these improvements, we can
easily state that the requirements for efficient production and
living have also improved, and thus, the shortest path problem
is becoming a hot topic to study and research.

The shortest path problem is a very well-known and even
better treated by many researchers, and in this paper, we will
try to use the same in order to provide a better notion of what
in fact shortest path problem includes, how it is treated and try
to provide exemplary solution for the new researchers of the
field.

In this paper, we have treated a very interesting problem,
which, in fact, came due to a professional challenge, which
generally required us to build a pizza bot, which, in a given 2D
grid, and a sequence of tuples (pairs) representing locations in
the grid, would deliver pizza in each location given through the
sequence of tuples. The solution is done using Python as
programming language, and Dijkstra and Astar as algorithms.

There are several reasons why we chose Python instead of
any other language, and one of them is because it is the most
common language used for problems of this field, there are
multiple ready-to-use libraries for AI problems, which make
working in these kind of problems easier. Dijkstra and A* also
have their reasons: Dijkstra is one of the first algorithms in the
field of shortest path problem, is the most common algorithm
used for research purposes, and A* is very similar to Dijkstra,
in fact, it is derived from Dijkstra, with additional properties
added during the calculation.

Following in this paper, you will be able to read more about
each algorithm separately and the programming language,
which is represented in the second section of the paper.

II. PRINCIPLES OF DIJKSTRA ALGORITHM

Dijkstra’s Algorithm is an algorithm for finding the shortest
paths between nodes in a graph. It was conceived by computer
scientist Edsger W. Dijkstra in 1956. The algorithm exists in
many variants, but the original one finds the shortest path
between two nodes. [2]

Originally, Dijkstra’s algorithm does not use the priority
queue. Since all nodes have the same priority, it runs in O (V2)
time complexity, where V is the number of the nodes. [3]

In a given chain of nodes, as shown in Figure 1, let A be the
initial node, where searching for the shortest path should begin.
Let F be the destination, where searching for the shortest path
should end. Dijkstra’s algorithm assigns a tentative distance
value to each node of the chain: it sets 0 for the initial node,
and infinity for the rest of the nodes. The infinite value does
not imply that there is a possible infinite distance, but to make
sure that later on, we know which nodes have been checked,
and which haven’t (there are some variant implementations that
does not label the value at all). There should be a set that will

International Journal of Science and Engineering Investigations, Volume 8, Issue 92, September 2019 57

www.IJSEI.com Paper ID: 89219-06 ISSN: 2251-8843

keep track of the nodes that are already checked, which
initially contains only the initial node and another one of those
which are unchecked yet. In the next step, for each unvisited
neighbor of the current node is calculated the tentative distance
value, which consists of the (distance to current node +
distance from current node to the neighbor). If the result is less
than their current tentative distance, the new distance is set as
tentative distance. When all of the neighbors are considered
and evaluated, the current node is removed from the unchecked
set of nodes to the checked set. The algorithm finishes when
the destination node is marked as checked.

Let us use the chain of nodes represented on Figure 1 as an
example to illustrate how the algorithm works. Let us use
Table 1 to track the path, which consists of three columns:
nodes, their distance from the initial node, in this case – node
A, and the previous node. After the algorithm is finished, Table
2 will be generated.

Figure 1. Sample Graph of Nodes

TABLE I. THE TABLE BEFORE CALCULATING THE DISTANCE

Nodes Shortest distance from node A Previous node

A 0 /

B ∞ /

C ∞ /

D ∞ /

E ∞ /

F ∞ /

G ∞ /

As seen in the illustration, A has three neighbors: B, C and
E. Initially, the distance to each of them is calculated, and the
smallest value is considered to be their tentative distance, until
next iteration. In this case, the next values for B will be 4, C
will be 3 and E is 7. Since C is the smallest value, C is added in
the checked set, and the same step is repeated here: C has three
neighbors: B, D and E. The distance from C to B is 9, but since
the previous was 4, this is disregarded. The distance from C to
D is 14, and since the previous value for D is infinite, the new
distance to D is 14. E is disregarded also, since the distance
from C is higher than the previous. The next smallest distance
that is not added in the checked set is B. There is only one

option from B: to D, since C is already marked as checked. The
distance from B to D is 9, and thus, the new distance for D is 9
since the previous is 14. The same steps are repeated until the
destination node is reached and added in the checked set.

Figure 2. The path that algorithm follows during execution, where the red

lines represent every try, and the purple line is the shorteset path.

In the end, the following table is generated, containing all
the distances and their predecessor node.

TABLE II. GENERATED VALUES AFTER DIJKSTRA ALGORITHM IS

EXECUTED

Nodes Shortest distance from node A Previous node

A 0 /

B 4 A

C 3 A

D 9 B

E 7 A

F 11 D

G 12 E

III. PRINCIPLES OF A* ALOGORITHM

A* pronounced as “A star” is an algorithm widely used in
the process of finding the shortest path between two nodes. It
was first published by Peter Hart, Nils Nilsson and Bertram
Raphael in 1968. A* achieves better performance by using
heuristics to guide its search. It’s a best first search algorithm
formulated in terms of weighted graphs, starting from a
specific starting node to find the destination node having the
smallest cost (shortest time).

The heuristics is the sum of two functions: G which
represents the exact cost of the path from the initial node to the
current one and H which is an admissible but not overestimated
cost to reach the goal node. [4][5]

Selecting the heuristic function is a very important factor
that affects the performance of A*. If the cost of H is equal to
the cost necessary to reach the target node, we say that H in
this case is ideal, and it would always follow the perfect path.

International Journal of Science and Engineering Investigations, Volume 8, Issue 92, September 2019 58

www.IJSEI.com Paper ID: 89219-06 ISSN: 2251-8843

In another case, when H is overestimated, it may happen that
the path to the target node is found faster, but the cost is not
optimal. And is some particular cases, it may come to a
scenario that, despite that the path exists; the algorithm fails to
find one. And when the chosen H is underestimated, the
algorithm will find the best possible path to the target node. An
implication of this would be that, the smaller the value of H¸
the longer will take to find the path: in worst case scenario, for
H = 0, the algorithm will provide the same results as Dijkstra’s
algorithm. [2]

The time complexity of A* depends on the heuristics too.
In the worst case scenario, when the algorithm is dealing with
an unbounded search space, the expansion of the nodes is
exponential in the depth of the solution d: O (bd), where b is
the branching factor (the average number of the successors per
state). In this case is assumed that a goal node exists and is
reachable from the start node. Otherwise, the algorithm will not
terminate. [6]

The A* algorithm creates and maintains two lists, one open
and another closed. In the open list is the priority queue also,
since it contains and keeps track of the nodes that are still to be
examined, and the closed list keeps track of the nodes that have
already been examined. [7]

The following snippet contains the code for A* that was
used during the development of the model we represent in this
paper. The code is written in Python.

def a_star_search(graph, goal):
 frontier = PriorityQueue()
 start = (0, 0)
 frontier.put(start, 0)
 came_from = {}, cost_so_far = {}
 came_from[start] = None
 cost_so_far[start] = 0
 goal = deque(goal)
 while not len(goal) == 0:
 current_goal = goal.popleft()
 while not frontier.empty():
 current = frontier.get()
 for next in graph.neighbors(current):
 new_cost=cost_so_far[current]+graph.cost(current,next)
 if next not in cost_so_far or new_cost<cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost + heuristic(current_goal, next)
 frontier.put(next, priority)
 came_from[next] = current
 return came_from, cost_so_far

IV. PROBLEM DESCRIPTION

This paper aims to provide a comparison in the
performance of Dijkstra and A* algorithms. The idea to this
problem came during a challenge to create a bot that would
deliver pizzas depending on the input, which would be a list of
tuples with coordinates representing points of a 2D grid. The
initial solution was provided with Dijkstra’s algorithm only,
but aiming to achieve a better performance, mostly in time, A*
came as an option. The results from the simulations are quite

descriptive and understanding, and will be elaborated in the
next subsections.

A. Simulation

Since the challenge was to deliver a proof of concept, all
the simulations have been executed using a PC, and the results
are only for research purposes, thus they can’t be used with
production purposes, without further, deeper and real tests.

All the simulations have been executed multiple times, with
different input parameters, in different environments with
different sizes. In the following subsection, the achieved results
will be represented in different figures.

B. Simulation Results

In the previous sections, we explained the basic principles
of both algorithms, Dijkstra and A*, on how way that they
operate. To provide an even better comparison between them,
we will try to represent the results of the simulations for both
of them.

To do so, we will start will smaller group of tuples, in
smaller grids, and will keep incrementing both of them.

Figure 3 contains the results of the simulations, which also
contains the code to visually illustrate the path which the
algorithm follows to reach all of the given points. Figure 4,
instead, represents the results of the simulations without
drawing the path. The results are much faster, which is
understandable due to the less calculations the machine has to
process.

Regarding the results, the horizontal axis represents the grid
size, the first bar represents the results when the tuples were
provided to Dijkstra algorithm, and the value represents the
time the algorithm needed to find the shortest path, and the
second bar represents the results about the time A* algorithm
needed to find the shortest path for the provided tuples. During
the comparison, we can see that big impact on time execution
have other features of the whole project, in this case, path
drawing. It is obvious that the results from figure 4 are about
80 - 90% better compared to figure 3.

Figure 3. Simulation Results when the algorithm draws the path.

10x1
0

20x2
0

50x5
0

50x5
0

500x
500

Dijkstra 0.0030 0.0090 0.1137 0.1396 15.9839

A-Star 0.0020 0.0090 0.1216 0.1279 16.2446

0.0000

0.5000

1.0000

International Journal of Science and Engineering Investigations, Volume 8, Issue 92, September 2019 59

www.IJSEI.com Paper ID: 89219-06 ISSN: 2251-8843

Figure 4. Simulation Results when the algorithm does not have to draw the

V. CONCLUSION

In this work, a performance perspective of Dijkstra and A*
algorithms is evaluated. The evaluation is based on the size of
the grid and the input provided. We can conclude that both
algorithm’s performance rate is linear, which means that the
bigger the grid, and the input, the more time will be needed to
find the shortest path. What we failed to conclude is that A*
performs better compared to Dijkstra. This might be for several
reasons, one of which must be the environment where the
simulations were executed.

As it is obvious from Table 3 and Table 4, in different
conditions, the algorithms behavior is different. Thus, we don’t
have a clear “winner” between them, although in most cases,
A* seems to have the advantages and be the best algorithm to
use.

Since the algorithms were developed only for proof of
concept purposes, they are not maximally optimized, and we
think that with some more improvements, the algorithms can
be much more efficient, which will also be in our focus for

future work. It can also be improved to run on much bigger
environments, for example, in a 50000x50000 grid.

REFERENCES

[1] B. Marr, “How much data do we create every day? The mind-blowing
stats everyone should read.” [Online]. Available:
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-
do-we-create-every-day-the-mind-blowing-stats-everyone-should-
read/#fbc976460ba9.

[2] E. W. Dijkstra, “A note on two problems in connexion with graphs”.
Numerische Mathematik. 1959.

[3] M. Leyzorek, R. S. Gary, A. A. Johnson, W. C. Ladew, S. R. Meaker Jr,
R. M. Petry, R. N. Seitz, “Investigation of Model Techniques – First
Annual Report – 6 June 1956 – 1 July 1957 – A Study of Model
Techniques for Communications Systems.” Cleveland, Ohio, 1957, Case
Institute of Technology.

[4] I. Zarembo, S. Kodors, “Pathfinding Algorithm Efficiency Analysis in
2D Grid”, Environment, Technology, Resources. Proceedings of the 9th
International Scientific and Practical Conference, Volume II. 2013

[5] H. Wang, J. Zhou, G. Zheng, Y. Liang, “HAS: Hierarchical A-Star
algorithm for big map navigation in special areas”, 2014 International
Conference on Digital Home, 2014.

[6] S. Russell, P. Norvig, “Artificial Intelligence: A Modern Approach (2nd

Edition)”, Prentice Hall, pp. 97 – 104, 2003.

[7] X. Ji, L. Liu, P. Zhao, D. Wang, “A-Star Algorithm Based On-Demand
Routing Protocol for Hierarchical LEO/MEO Satellite Networks”, 2015
IEEE International Conference on Big Data (Big Data), 2015

How to Cite this Article:

Ramadani, E., Halili, F. & Idrizi, F. (2019) Tailored

Dijkstra and Astar Algorithms for Shortest Path Softbot

Roadmap in 2D Grid in a Sequence of Tuples.
International Journal of Science and Engineering

Investigations (IJSEI), 8(92), 56-59.
http://www.ijsei.com/papers/ijsei-89219-06.pdf

10x1
0

20x2
0

50x5
0

50x5
0

500x
500

Dijkstra 0.0010 0.0030 0.0199 0.0199 2.2430

A-Star 0.0010 0.0030 0.0229 0.0209 2.3467

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

	I. Introduction
	II. Principles of Dijkstra Algorithm
	III. Principles of A* Alogorithm
	IV. Problem Description
	A. Simulation
	B. Simulation Results

	V. Conclusion
	References

