

58

International Journal of

Science and Engineering Investigations vol. 7, issue 79, August 2018

ISSN: 2251-8843

A Common Approach for Learning Classifiers from Distributed

Data

Karlen Mkrtchyan

Ph.D. Student, Institute for Informatics and Automation Problems (IIAP), Armenia
(mkkarlen92@gmail.com)

Abstract- In this paper we will discuss the problem of learning
from horizontally distributed data, we will try to add theoretical
background for some class of learning algorithms. We will
apply obtained results on perceptron algorithm, and show that
some class of learning algorithms could be learning in the exact
same way as in the case of centralized data.

Keywords- Machine Learning, Sufficient Statistics,

Distributed Computation, Distributed Machine Learning,

Perceptron

I. INTRODUCTION

Learning from distributed data is not mere scientific
problem; moreover, this problem comes from real production
use cases. Learning in WSN (Wireless sensor network) [1] is
one example where learning in distributed system is forced by
environment. More generally IoT [2] infrastructure itself is
meant to be distributed, and not only learning, but also all the
computations should be implemented in distributed fashion, to
cover the needs of infrastructure and in some cases the needs of
end users. Learning from distributed system is instance of
distributed computation; consequently it does inherit common
problems known in distributed computation. Some architecture
designs requires privacy preservation [3], [4] fault tolerance
[5], encrypted data transfer [6], low communication costs [7]
and etc. These are just few of the requirements, which we will
try examine in the scope of distributed learning, however, some
of them are not in the scope of our discussion, and they are
properly addressed in other distributed computing problems
[8], [9], [10].

The paper is structured as follows. In section 2 we address
the problem of distributed computing more formally. In section
3 we provide theoretical results on learning from distributed
data. In Section 4, as an example we apply the results on
Perceptron algorithm [11].

II. THE PROBLEM OF LEARNING FROM DISTRIBUTED DATA

Let’s suppose we are given data sources ,
drawn from some unknown distribution, which are labeled
examples reprinting some predefined event which is observed.
Let’s assume is a learning algorithm, and for the input

⋃

 it outputs hypothesis that predicts label of future

unlabeled examples . If take ⋃

 as one

data source available in one machine, then it is conventional
learning case or centralized learning problem. Now let’s
assume are in different machines. Being in
different computation centers brings with it restrictions on the
system, more specifically, restrictions on how data centers
communicate and what can be broadcasted from one data
center to another. We will define the set of restrictions with .
 is addressed as set of restrictions or set of constraints in
literature.

To sum up, we can now define the problem of learning
from distributed data as follows.

Definition 2.1: We are given data sources , a
set of restrictions Z, a hypothesis set H, and performance
evaluation criterion P. Learner L learns from that
optimizes P , does not violate conditions from Z and outputs
hypothesis .

From the definition it is easy to see, that, in the case, when
 we have the centralized learning problem.
From this definition centralized learning is the particular case
of distributed learning. In this paper we only will discuss the
problem of learning with horizontally distributed. Although
vertically portioned data also has its interest, but we will limit
ourselves by only horizontal partitioning due to its much more
practical use.

Our purpose is to construct an algorithm that would be
exactly the same as in the centralized learning case. Formally
exactness can be defined in the following way.

Definition 2.1: Algorithm L, which is employed in
 distributed system, is said to be the same as

learned from ⋃

 , if they output the same hypothesis

with exactly same classification error.

To complete the definition it is important to cover some
specific class of algorisms that make random choices from
learning data set. For example Decision trees make random
choice when splitting attributes that have the same Gini index.
We assume that in both cases we do exactly the same random
sampling. This restriction is needed to ensure the condition of
exactness addressed above is correct independently on random
choices.

International Journal of Science and Engineering Investigations, Volume 7, Issue 79, August 2018 59

www.IJSEI.com Paper ID: 77918-08 ISSN: 2251-8843

The set of constrains is the main difficulty added by
distributed system. We have defined but we didn’t mention
what kind of elements it consist of and where they come from.
The set in fact, is always predefined, and it comes from
practical use cases. To make it clear, about the nature of we
will give some common and practical examples of the elements
of . One of most common examples is restriction on raw data
transfer. That means, no data center can directly read the data
of other participants, but may execute remote code, to obtain
aggregated results. Some data centers have restriction on traffic
and certain amount of data transfer is allowed, for example
5Mb per hour. Some constraints are designed to preserve data
privacy, hence raw data transfer is not allowed. There may be
restrictions on executing remote code, because some
aggregation results can reveal data structure more or less.

These are very common and very general type of
restrictions. In practical use cases there are much more
restrictions on technical level. And in fact the restrictions are
provided in the form of SDKs or public APIs which clearly
define the communication interface among participants. And
main problem is to meet all requirements of the distributed
system, while integrating centralized learning algorithm to
decentralized system.

III. LEARNING FROM DISTRIBUTED DATA

There are many methods for learning from distributed data,
and in fact, for any set of restrictions , can be found method
which approximates the needed solution enough to satisfy
practical needs. The most common and practically useful
algorithms, such as SVM, Decision Trees, Boosting have
adapted versions for distributed environments, which are
practically useful.

For instance in [12] given distributed SVM algorithm
called DSVM. They took as privacy preservation, and
defined the network topology where each participant may
communicate with its neighbors. In essence the algorithm is
incremental and sequential algorithm. At each iteration, every
node solves SVM problem locally then it transfers statistics to
its neighbors. They solve the problem with ADMoM [13]. It is
proven there that the algorithm converges to the centralized
version of SVM. Although the algorithm has sequential nature,
and it does not output the exact same hypothesis as in
centralized version, nevertheless it shows good practical
results, suitable for many applications.

There are many algorithms for Boosting, which one of the
most popular algorithms for learning classifiers. Back in 2001
A. Lazarevic, Z. Obradovic [14] purposed a modified version
of boosting algorithm that could learn from distributed data.
The essence of algorithm is to look at distributed data as one
data center, and imitate the method used in centralized version.
They define global distribution of data, by using the local
distributions, and for each iteration, they broadcast weak
learner to every participant, they update their weights locally
and begin new iteration with new local and global distributions.
There many modifications of this approach, but the cores are
the same.

There are many approximations for Decision trees as well.
Most used among them are Random Forests [15], which differ
the methods of SVM and Boosting. In fact [13] and [14] use
data aggregation method, [15] can be classified as model
aggregation method.

Surely there exists more methods, even better, to solve
particular problem, but we’ve seen that these methods don’t
share common approach or method for solving the problem; in
fact they solve the problem by robust approach to specific use
case, which is hard to generalize for other cases. Thus our aim
is to fill this gap from more general perspective and provide
learning strategy that could be applied to specific algorithm.
Firstly, let’s make some common definitions, for covering
notions used later in this paper.

Definition 3.1: For given parameter statistic is
called sufficient if it gives enough information about from
dataset for a task .

In fact it is evident that the whole set D is sufficient
statistics itself, and this the trivial of sufficient statistics.
Nevertheless, more interest has that is minimal, from
performance, time, and privacy perspectives. To make it more
clear of sufficient statistics let’s review an practical example
from leaning algorithms. For instance CART decision tree uses
information gain, and with the help of that in each step chooses
splitting attribute. For CART information gain is the sufficient
statistics. For Support Vector Machines (SVM) the final
solution depends on vectors that lie on marginal hyper planes.
These vectors represent sufficient statistics for SVM. In fact
almost all learning algorithms work this way. In the first phase
they all have information extraction that is they analyze data,
and according to some predefined algorithm calculate
sufficient statistics, by using training examples. These steps
can be observed by Neural Networks, Naïve Bayes, SVM,
C4.5, ID3 and many other popular algorithms. In other words,
we may say that is sufficient statistics for learning
hypothesis , when there algorithms L, which accepts
and outputs . This must be reviewed as general explanation
because; some algorithms may use with batches, and
converge iteratively, which is observed for example by neural
networks, on the other hand, SVM uses all data to retrieve
support vectors. But in both cases the notion of sufficient
statistics is the same in essence.

The stated above means in fact sufficient statistics is what
we get from information extraction, and it is sufficient for
learner to produce hypothesis. By using this fact, we can use
sufficient statistics to scale centralized algorithms to distributed
versions. Let’s suppose we are given distributed system with
participants, each one has its dataset appropriately. Our aim
to construct general strategy for learning exact same hypothesis
with algorithm , as in centralized case. For this purpose, we
will use the notions of information extraction and hypothesis
generation to separate learning process. What we need in
distributed environment is to divide information extraction. If
we had centralized data we would extract data with
calculations we needed, because we may select any data we
want. In distributed environment it is not the case. The same
calculation result, which is statistics in essence, should be

International Journal of Science and Engineering Investigations, Volume 7, Issue 79, August 2018 60

www.IJSEI.com Paper ID: 77918-08 ISSN: 2251-8843

obtained from by separating calculations of
statistics.

Observation 3.1: For any learning algorithm , that uses
sufficient statistics for generating hypothesis in centralized
model, there is transformation of L algorithm in distributed
system, in a way, that the generated results are exactly the
same.

Truthiness of the statement could be inferred by
constructive example. Suppose we have D data in centralized
model, and that algorithm uses iterations to generate . As
 learns by using sufficient statistics, it means at each iteration
it calculates , statistics. No let’s suppose in
distributed environment, that is now we have and

⋃

 . It is evident that ⋃

 , which means

could be selected for part by part, then send all data to
predefined data center and calculate . Result will
obviously be the same as in centralized case. So the basic case
is covered, and it is possible to use this method in distributed
environment. Nevertheless, it is not as simple as the example in
the case when we consider , set of constrains. The
constructive method we have used implies that raw data
transfer is allowed, which is not the case in many cases. It
means that we need method not to send raw data, but send only
sufficient statistics, and somehow combine the results to obtain
 . In fact the notation may be confusing in terms of
 . The algorithms usually make statistical queries, and obtain
the result of the query as a number or vector and etc. We used
 notation to demonstare that in iteration the
statistical query q, made by algorithm , used data portion to
compute sufficient statistics for . As we have seen the main
problem is access to data, which could be restricted in different
ways. Usually data access can be two types parallel and
sequential. In the case of sequential access statistics computed
for is transferred to and so on in the final stage all
statistics is combined to compute sufficient statistics. In the
case of parallel access data centers could be accessed
independent from each other. As we can see main task is to
decompose one on statistical query into multiple queries and
then integrate those results to obtain the same result as in
centralized case. That is statistical query should be
decomposed into and combine them by some
combiner function. Formally the statement is be the following.

Lemma 3.1: For the distributed learning algorithm the
sufficient condition for learning from distributed data is the
following. If for any there exists combiner function,
 such that

The proof for this lemma is evident, because as we have
and , it is the same calculation as in centralized
case, which means we will get the same sufficient statistics,
consequently the same .

Lemma 3.2: If the statistical query is decomposable into
 independent queries, then there exists function
such that .

This lemma is also evident, because if we can decompose
into independent parts that means q operates in such manner.
Generally said the lemma says that the existence of

the same as existence C. Indeed, to decompose query, means
that there is way to go back from to , otherwise it
is not decomposition. The transformation function
 is the function we need. The vice-versa holds true as
well. When we have C, for which
 then we have also
 . The way we find is out of the scope of
this paper. It is more of problem Factorization [15],[16]
problem properly addressed in literature.

IV. LINEAR CLASSIFICATION IN DISTRIBUTED SYSTEM WITH

PERCEPTRON

Firstly, let’s make it clear, what is sufficient statistics for
perceptron algorithm. As it is known, the perceptron algorithm
does classification with weight vector , which is learned
iteratively. At every step algorithm updates according to
current data sample randomly selected from training
examples . It means that at iteration we have which
is constructed on and so on by induction, It means
 depends on and some . For sufficient

statistics we can write the following expression
 , and it is obvious that is computed

when the iteration is finished on whole data set.

Now assume we are given data sets in
distributed system. According to statement above all we need is
to calculate weight updates at each iteration. As we have
mentioned earlier, by addressing to random choice of data we
will assume that in both cases we will sample in the same way.
To make it clear of exact way we could do that, we will present
the following simple algorithm. Firstly, lets order data sets
 in some way, that their data indexes will be fixed
with their data sizes. In centralized version we will index data
as well. Let's denote the number of all data samples. This
means that we can generate random number from 1 to with
uniform distribution and then pick data sample according to
that index. It is necessary to note that the same index cannot be
chosen more than once. It is evident that chosen random
number could be mapped to distributed data indexes, which
evident will be the same sampling. After this we initialize
weight vector with random values, let’s say with zero vector.
Then at each iteration we choose random number ,
according to we will chose the participants index. Then
weight vector is broadcasted to participant, then vector is
updated and send back to computation center. The iteration
continues until no one updates weight vector during whole
iteration.

Theorem 4.1: The algorithm of distributed perceptron is
exact.

The exactness of the algorithm in fact is consequence of the
general strategy. In terms of perceptron algorithm, we calculate
exactly the same weight vector, because we iterate through data
in exactly the same way, thus, the final vector is the same.
Below is given the pseudo code for the algorithm.

Init

For all K

International Journal of Science and Engineering Investigations, Volume 7, Issue 79, August 2018 61

www.IJSEI.com Paper ID: 77918-08 ISSN: 2251-8843

Generate randomly

Update according to data samples selected from

Send back to computation center.

Stop when for all , is not updated in one pass

Theorem 4.2 The algorithm of distributed perceptron has
exactly the same time complexity as centralized algorithm.

This is also evident because we pass though data exactly
the same way, and perceptron convergence method is the same.
However, if we add some restrictions on data set, we may even
boost performance in distributed system. Suppose that we now
that is linearly separable, which obviously means
that is linearly separable as well. Consequently, we may
construct hyper planes in , separately. It means
we can separate into and sets according to their
hyper plane. Let's denote and convex
hulls of and for all . The construction of convex
hull has complexity , and it can be done by
Quickhull [17]. The cost we pay for convex hulls is +
 for all . In distributed algorithm we change with
 . The rationale for this can be inferred
easily, because hyper planes depend on marginal points, and
the points inside convex hull make no sense from perspective
of separating hyper plane. This simple change results in
significant boost in communication complexity,
 for large enough data sets.
Thus by this we have minimized communication complexity
and, by not using inner points of data sets , we
reduce data privacy violation risk. We don’t transfer raw data,
nevertheless, not using essential parts of data sets in
computation results in even better privacy preservation.

V. CONCLUSION

The strategy described in this paper tries to approximate a
very general approach of distributed data classification. As we
have seen in the method there is one key condition, that is,
resulted algorithm should be exactly the same as in centralized
version. This condition is not merely a demand on accuracy of
classification. By having exactly the same hypothesis as in
centralized version we make bridge between distributed data
classification theory and conventional data classification
theories. More precisely, we are eligible to use all theoretical
legacies of conventional data classification algorithms, which
is much wider than of distributed data classification. The
abstract nature of the method does not allow us to derive
implementations for exact algorithms immediately, like
perceptron, and each algorithm requires solution uniquely. This

is the main problem our future work will be dedicated. The
core problem is to decompose statistical queries no matter of
their form. By having under consideration data privacy
preservation and communication complexity. The last
statement in fact is restriction on set Z. The justification of this
kind of restriction comes from practical use cases.

REFERENCES

[1] C. Buratti , A. Conti, D. Dardari ,R. Verdone, An Overview on Wireless
Sensor Networks Technology and Evolution, ISSN 1424-8220 2009.

[2] M. Rana, W. Xiang, E. Wang, M. Jia IoT Infrastructure and Potential
Application to Smart Grid Communications, GLOBECOM IEEE,2017

[3] Y.Brun, N.Medvidovic, Preserving Privacy in Distributed Systems, 36th
IPCCC IEEE, 2017

[4] B. Fung, K. Wang, R. Chen, P. S. Yu, Privacy-preserving Data
Publishing: A Survey of Recent Developments, ACM Computing
Surveys (CSUR), vol. 42, no. 4, pp. 14, 2010

[5] Z. Wang, N. H. Minsky Fault Tolerance in Heterogeneous Distributed
Systems, 10th IEEE ICCC, 2014

[6] R. Pranesh, M. Vigneshwaran, V. Harish, G. Manikandan A New
Approach for Secure Data Transmission, International Conference on
Circuit, Power and Computing Technologies (ICCPCT), 2016

[7] A. Cordoba, F. Farina, J.R. Garitagoitia, J.R.G. de Mendivil, J.
Villadangos A Low Communication Cost Algorithm For Distributed
Deadlock Detection and Resolution, 11th Euromicro Conference on
Parallel, Distributed and Network-Based Processing, 2003

[8] Jing Wang, G. Beni Distributed Computing Problems in Cellular
Robotic Systems, IEEE International Workshop on Intelligent Robots
and Systems, Towards a New Frontier of Applications, 1990

[9] A. Sinha, Tapas Saini, S. V. Srikanth Distributed Computing Approach
to Optimize Road Traffic Simulation, International Conference on
Parallel, Distributed and Grid Computing, IEEE, 2014

[10] Y. Zhang, Y. Tian, W. Kelly, C. Fidge A Distributed Computing
Framework for All-to-All Comparison Problems, IECON 40th Annual
Conference of the IEEE Industrial Electronics Society, 2014

[11] F. Rosenblatt The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain, Psychological Review, Vol. 65,
No. 6, 1958

[12] P. A. Forero, A. Cano, Georgios B. Giannakis Consensus-Based
Distributed Support Vector Machines 11(May):1663−1707, 2010

[13] A. ADMOM The Distributed Boosting Algorithm, Knowledge
Discovery and Data Mining: 311-316,2001

[14] A. Lazarevic, Z. Obradovic The Distributed Boosting Algorithm,
Knowledge Discovery and Data Mining: pp 311-316, 2001

[15] S. Chung, C. Seabrook A singular Value Decomposition: Analysis of
Grade Distributions. Georgia Institute of Technology; VIGRE REU:
2004

[16] Fan J, Li R. Statistical Challenges with High Dimensionality: Feature
Selection in Knowledge Discovery, The Mathematics Arxive:
Math. ST/0602133, 2006

[17] C. B. Barber, D. P. Dobkim, H. Huhdanpaa The Quickhull for Convex
Hulls, ACM Transactions on Mathematical Softwae, vol. 23, no.2, pp.
12 ,1995

	I. Introduction
	II. The problem of learning from distributed data
	III. Learning from distributed data
	IV. Linear classification in distributed system with perceptron
	V. Conclusion
	References

