

68

International Journal of

Science and Engineering Investigations vol. 7, issue 76, May 2018

ISSN: 2251-8843

A New Approach: A Hardware Device Model Solving Traveling

Salesman Problem in O(n2) Time (Practical Application and

Theoretical Consequences)

Óscar E. Chamizo Sánchez
Private Researcher

(chasanos@telefonica.net)

Abstract- Traveling salesman problem (TSP for short) is
perhaps the most widely known and deeply investigated
problem in computation. Given a set of cities, the simple goal
is to find the cheapest way of visiting all cities and returning to
the starting one. The optimal (in case of a simetric euclidean
TSP the shortest) path from the starting city to itself through all
the remaining cities is, in general, only one from the (n-1)!/2
set of possible tours or circuits. In this paper we present a
hardware device model solving any instance of TSP in O(n

2
)

time. In section 1 we go directly to the device model and prove
mathematically its validity. In section 2 we explain the basic
ideas behind the physical model. In section 3 we analyze
complexity in such a device. In section 4 we outline the key
aspects to put into practice the theoretical model in a feasible
device. In section 5 we claim an almost sure equivalence
between the Extended Church-Turing thesis and the conjecture
P=NP. Finally in section 6 we discuss interesting implications
in the field of computational complexity with special regard to
the widely believed conjecture P≠NP.

TSP is one of those so intractable problems that the best,
perhaps the only, way to solve is to get somebody else to solve
it, if possible a "blind" law of nature, let´s say gravitation or
electromagnetism.

Keywords- Computational Complexity, TSP Problem, P versus

NP, Church-Turing Thesis, Network Computing

I. THE MODEL

Let be S a set of n emitter and receiver devices (e.g.
computer network, cellular phones, etc., from now on cells) at
any configuration in a 3-dimentional space. All cells are
directly linked to each other whiteout antennas or intermediate
devices of any kind and every cell can perform the usual
operations, receiving, processing and sending a string of bytes,
at the same speed. Now, any cell, let´s say cell 1, sends in t=t0
its own number (1) to the remaining cells of the set. Every
time a cell receives a string, appends its own number to the
string and rebroadcasts it unless its own number is already in
the string, thus avoiding redundant loops and subtours.

Proposition: The first string (A straightforward reasoning
assures that in fact not one but two n-strings will arrive in first

position simultaneously with the same stored sequence in
reverse order) of length n to reach cell 1 in t = t1 is the shortest
path from 1 to itself through all points of S-{1} and c(t1-t0) is
the optimal tour length (c = speed of light), as we can state with
no loss of generality that operation inside each cell takes no
time.

Lemma 1: Every string of length n arriving to 1 is: 1,σ(S-
{1}) i.e., element {1} at first position followed by a
permutation of S-{1}.

Proof: Every string of length n reaching cell 1 started in 1
and has passed only once through each one of the n-1
remaining members of the set. Had it passed twice the string
would not have been sent so the string would not have reached
cell 1. Had it skipped any and the string would not have length
n.

Lemma 2: Every possible permutation 1,σ(S-{1}) will reach
1 in finite time.

Proof: Every cell appends only once its number to every
string and every string contains only once every cell, so given
that every string begins with 1 and n is finite every 1, σ(S-{1})
string will reach 1 after n steps.

Lemma 1 and 2 prove that every tour reaches cell 1 and
every n-string reaching cell1 is a tour. Now suppose the first n-
string to arrive to 1 in time t and tour distance d is not the
optimal tour i.e. the tour of minimum distance. Hence the
optimal tour with tour distance d´ will reach 1 in t´ > t but that
is impossible given that: t´= d´/c, d´< d and c constant. q.e.d.

II. THE IDEA BEHIND

How long it takes to solve the traveling salesman problem?
It takes as long as it takes to the salesman himself to travel the
optimal path. However, (n-1)! salesmen are required. Let´s see
it: Each salesman takes a table, a tour sequence with n boxes to
be filled out with the number of the cities he passed trough
(Not necessarily he, but the table itself, or more accurately, the
information stored at the table). So in the beginning n-1
salesmen leave at the same time the first city (say city one)
bound for the remaining cities. In their tables the first box is
filled with number one and all other boxes remain empty.

International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 69

www.IJSEI.com Paper ID: 77618-09 ISSN: 2251-8843

Whenever a salesman reaches a city the information stored at
his table is copied to the n-1 tables of n-1 new salesmen
(Obviously the arriving salesman could continue his travel thus
reducing number of new salesmen needed to n-2 but that is
completely irrelevant to our purpose). These n-1 salesmen
append the number of their city to the table, leave their city
bound for n-1 cities and so on and on. There is one important
exception: No salesman leaves a city when its number is
already stored at the arriving table.

Is almost trivial to prove that:

1) The first salesman to reach the starting city with a full n
table has traveled through the optimal path, optimal path that
has been stored at his table.

2) The optimal tour length is: time from the starting city
multiplied by speed.

Salesman himself has solved salesman problem and the
certificate is in salesman´s hand: The table of the n cities in the
very order his table passed trough.

Obviously some assumptions must be made to assure the
accuracy of the result:

1) All salesmen move at the same constant speed.

2) Time taken in copying and, when required, appending
data to the tables is zero. Or at least is the same for every
salesman at any city. Anyway this time must be negligible in
the sense that is less than the time taken to travel between the
two closest cities in the set, not a challenging assumption
indeed.

Now, the well-known drawback, the very bottleneck of this
approach is: when n grows the number of salesmen required
grows exponentially until it reaches mammoth amounts of
them even for humble sets of cities. Second drawback: The
longer the path the longer the waiting time (The problem of the
tour length is almost negligible (almost is not absolutely, see
below) given that the set can always be resized with a change
of scale shrinking distances while keeping relative positions.).

So all we need to improve our approach to TSP is to get
very fast salesmen in industrial quantities. Do we have? Do we
have an almost infinite supply of salesmen traveling at speed of
light? We do. Photons. This brings us back to section 1.

III. ANALYZING COMPLEXITY IN A FIN MODEL

The model consists of a network of n fully interlinked
Turing Machines (from now on Fully Interlinked Network, FIN
for short). Worst case complexity of the model is easy to state:
When the first n-string reaches the starting city three simple
operations has been made n times: sequential search, O(n), and
insertion, O(1) if required, plus operations intended for moving
strings from/to ports, O(n). In order to preserve assumption 2
one of the following arrangements must be taken:

1) Keep always n+1+n cycles of running time to perform
operations no matter if these cycles are used or they are not.

2) Set strings of n zeros from the beginning and replace
zeros as required.

Thus in both cases worst, best and average complexity
turns out to be O(n)*[O(n)+O(1)+O(n)]->O(n)*O(n)->O(n

2
).

Why is FIN model so efficient? It is so efficient -might be
thought- because is a set of n TM´s working in parallel
computation. Not at all. At the heart of a TM each tick from its
clock allows to perform one and only one basic operation. At
the heart of the universe each heartbeat of time allows infinite
operations. A single salesman traveling n! tours or n! salesmen
traveling one tour in turn is perfectly equivalent and perfectly
ruinous in terms of efficiency. Why not n! salesmen traveling
at a time? Is the universe a TM? Sure not. It would be better to
say that Universe is a Super-TM. Universe can perform an
unbounded number of operations during the same period of the
time a TM performs one. Even more: shrinking the duration of
a TM tick inexorably finds unreachable physical bounds,
between others, speed of light [1]. However we don´t even
know if there is something like a tick in the universal clock and
in case yes which its duration is. And yes, as a matter of fact,
we can improve the performance of an algorithm running in a
single TM by adding new TM´s working together in parallel
mode. But adding a new TM would be (as its best) equal to
duplicate the clock frequency i.e. the number of ticks per
second. Something useless when the number of operations to
perform grows exponentially with the size of the input. What
makes the difference is: In parallel computation model adding
one more cell speeds the running time in at most a factor 2. In
our network computation model adding one more cell speeds
running time in a factor n. The same factor in which adding a
new city to a TSP instance increases its complexity. Not only a
quantitative change but a qualitative one.

Could this computation device be simulated by a TM? Of
course. In fact, the underlying idea of Held Karp algorithm [2]
performs exactly that simulation. However it runs in O(2

n
n

2
)

time (As a matter of fact from 1962 no one has been able to
improve such performance with a better exact algorithm). In
other words, there exists a physically realizable computation
model that presumably cannot be simulated by a TM with
polynomial overhead. Perhaps this has nothing to do with
classic computation but with a brave new world, but all that
will be further addressed.

IV. OUTLINING A REAL DEVICE IN PRACTICE

Now, let´s go back to Earth and let´s try to figure out how
this device could be implemented in practice.

The first observation to be made from a practical point of
view concerns that so seemingly unfeasible idea: For each
instance of the problem we must arrange physically in space a
set of cells or computers, integrated circuits, RAM´s or
whatever it be. But our hardware, like it or not, is nothing but a
TM network with their interlinked devices in a concrete
position in a physical space. Could we emulate this machine
with some feasible and familiar hardware tool while keeping its
interesting skills? I think so.

International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 70

www.IJSEI.com Paper ID: 77618-09 ISSN: 2251-8843

Two different approaches can be devised in order to
replicate usefully the model:

1) A set of electronic interlinked devices packed as closely
as semiconductor chip makers usually do.

2) A conventional computer network. It could be
implemented with some technical adjustments in a global
system like internet. This network with five billions
interconnected devices provides boundless possibilities in order
to solve unprecedented instances of the TSP and therefore of
other NP problems.

In both cases n devices/computers are required. And in both
cases their spatial configuration is meaningless at all if we
make sure the transmission time between each other is exactly
the same. The underlying idea here is to translate distance into
time. Then the spatial configuration of the instance could be an
input to be stored in its digital memory. Why? Because every
device can delay the sending of each string to the remaining
devices a given amount of time as a linear function of the
physical distances in the TSP instance. Thus configuring n TM
in physical space is equivalent to store their n(n-1)/2 distances
in the digital space of the machine´s RAM. In fact every device
needs to store only n-1 distances i.e., its own row from the
matrix of distances. Better yet if, once and for all, in the very
configuration procedure each device stores directly the, let´s
say, timetable of dispatching times.

Now, suppose we have our n device/computer network
configured, i.e., each computer has stored its own row of n-1
distances from the table of distances in its memory translated to
delaying times. Once any of them chosen to begin with, let´s
say computer 1, we set the following straightforward
procedures:

Algorithm for computer 1:

 -Send 1 to the net.

 -Waiting to receive a string.

 -A string is received.

 ¿Has n length?

 No: Keep waiting
 Yes: Output: The n length string. End of program.

Algorithm for any other computer m:

 -Waiting

 -A string is received.

 -Is m in the string?

 Yes. Keep waiting.
 No. Store the last byte (say k) of the string. Search in

the timetable the corresponding delay to that byte. (Distance m-
k). Append m to the string.

¿Has the string n length?

 No. Store it to the buffer/dispatching queue.

 Yes. Search in the timetable the corresponding delay

to the distance m-1 and add this delay to the previous one.

Store it to the buffer/dispatching queue.

 Send at scheduled time.
 -Keep waiting.

Some issues and technical challenges still need to be
addressed.

1) How to match distances (distances are floating points) to
time delays in ticks from the clock (ticks are integers) i.e. how
to round numbers without jeopardizing the accuracy of the
overall process.

2) How to deal with exactly simultaneous arriving or
departing strings.

3) How to avoid unintended time delays when a string
reaches a device before the previous string has been entirely
dispatched.

Solution for the first problem would be resizing if
necessary. Given that any set of points can be resized ad
libitum and distances increased or decreased, a trade-off
between accuracy and efficiency must be taken.

For the second issue the simplest approach could be to set a
universal delay of r cycles for every device whenever it gets a
string, in order to ensure enough time for data processing and
orderly dispatch at the scheduled time. This general delay
would imply an increase of n*r cycles in execution time. But
O(nr)->O(n) and O(n)+O(n

2
)->O(n

2
). Once more, network

processing pays off.

In respect the third issue I cannot envisage another solution
but a (most likely) exponential space of memory, the very
bottleneck of this approach.

One could wonder if it´s worth making the effort to
synchronize an n-computer network (the good news here is that
such a device is already created) or to design and build an n-
device machine for a n-input problem. The answer would be
yes indeed if only for TSP, where fields of such a paramount
importance as ongoing work in genome sequencing are
involved, but the fact that any NP complete problem can be
reduced (i.e. translated) to another one in polynomial time [3]
makes it a general purpose machine. In respect of hardware
needs aside from the required space of memory, CPU resources
are kept to a minimum. Each device needs only to operate over
n sized strings of integers the simplest imaginable procedures.

Anyway, electronic requirements, computer architecture
and further technical details are well beyond my capabilities in
the subject.

V. UPON THE EQUIVALENCE BETWEEN THE EXTENDED

CHURCH-TURING THESIS AND P=NP

Aside from any practical purpose, our hardware device
model allows us to make some interesting statements that we
can infer from.

Since the mere Church-Turing thesis states that Turing
machines can simulate any computational device, but perhaps
at the cost of an exponential overhead in time and/or space, the
Extended Church-Turing Thesis (ECT for short) says that
every physically realizable computational device can be
efficiently simulated by Turing machines[4]. Unlike the
Church-Turing Thesis, which computer science general

International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 71

www.IJSEI.com Paper ID: 77618-09 ISSN: 2251-8843

agreement believes to be right, the Extended Church-Turing
Thesis is widely believed false just as it happens with the
P=NP conjecture[5].

Now we can prove that:

1) Extended Church-Turing thesis implies P=NP.

As shown, exists a physically realizable computation model
solving TSP in O(n

2
) time. If ECT thesis holds, this

computation model can be simulated by a TM with polynomial
overhead, i.e., in O(n

2
)

k
 time, so it follows that P=NP. q.e.d.

2) If Church-Turing thesis holds, P=NP implies Extended
Church-Turing thesis. Indeed if P=NP, anything computable is
solvable in polynomial time. If the mere Church-Turing thesis
(widely tested and believed to be true) holds, every physically
realizable model can be simulated by a Turing machine. If it is
computable in O(n

k
) time, it follows that the ECT is true. q.e.d.

Thus, if Church-Turing thesis holds, ETC and P=NP are
equivalent.

VI. P, NP AND BEYOND

After all, things would be really easier if P=NP let´s say in
the classical sense. (From now on P=NP c.s.) P=NP c.s. means
an efficient algorithm exists solving TSP in a TM computation
model. But for years we have been waiting for someone to turn
up with an efficient algorithm or for someone to turn up with a
proof that such algorithm does not exist. We have surrendered.
In our approach we really do nothing. It is not an algorithm, it
is not a simulation, it´s the very speed of light traveling the
very paths of the set solving the problem in real time. We have
thrown in the towel, we have looked for someone in nature to
do the task, speed of light, and told her: I can´t deal whit this.
Do it yourself. So meanwhile ¿Is TSP solvable in polynomial
time O(n

c
) in a single TM? We Don´t know.

However, I dare to make the following remarks:

First: We have proved that assuming Church-Turing thesis,
P=NP c.s. implies the Extended Church-Turing thesis (One
cannot fail to note that the Extended form of the Church-Turing
thesis has nothing to do with Church/Turing.[7]) and, as
shown, it seems unlikely that an efficient algorithm in TM
could simulate our device model. A proof that such a device
model cannot be simulated by a TM in polynomial time would
invalidate the extended form of CT thesis and then P≠NP c.s.

Second: If the answer is yes (P=NP c.s.) and parallel
computation thesis holds true, ¿is it solvable in O(n) time in a
parallel computation mode? But what would that mean? Would
it mean that we could turn up with the optimal tour before the
salesman, traveling at speed of light, have passed through?
Would it mean that something somewhere someway moves
faster than light? That would be nonsense. Then I conjecture
not. I conjecture such an algorithm for a single TM could exist
only if there is in the universe some v > c. I can´t even figure
out where to start proving that impossibility by means of such a

bizarre statement, rooted not (only) in mathematical arguments
but in the deepest structures of physical nature of reality.

The outstanding and visionary works by Turing, Church,
Gödel and others giants of science in the 1930´s allowed us to
take full advantage of a model that became quickly standard
and paradigm of computation. Eighty years later, the time has
come to ask the question whether this familiar paradigm fully
encapsulates everything machines can do or, on the contrary,
this model has become outdated in view of the hardware tools
nowadays available. In particular with regard to unexplored
areas of connectivity and intercommunication in running time
between algorithms instead of a single algorithm running
disconnected from outside world (i.e., disconnected from other
algorithms) and self-absorbed from start to finish.

At this point it´s worth wondering why a "natural brain" is
much more efficient than an electronic one [6] performing
certain kind of tasks, pattern recognition, future forecasting and
so on, tasks that share in common the following feature: They
don´t fit well with our computation model of a step-by-step
instructions set. Instead, it seems that the power of a human
brain lies, not in the, let´s say, computational capacity of
neurons themselves but in their interlinking density and speed.

Our old CPU, or TM, or RAM approach is a general
purpose, ideal tool to find exact solutions in unbounded time
with complete information (By no means am I stating that our
TM model cannot turn up with an acceptable solution within a
(well...) reasonable period of time, as is proved, for example,
by very efficient heuristic algorithms for TSP. I limit myself to
remind what TM is designed to and what is mainly for). For
evolutionary reasons our brain became a general purpose
machine to quickly find with sketchy information acceptable
answers for straightforward, hard and even imposing
challenges. Joining the best of both worlds would be such a
giant leap that it would indeed improve dramatically, perhaps
in a dreadful manner, our capacity to shape world and
ourselves.

VII. CONCLUSIONS

As far as I know, while single TM computation, parallel
computation or network standard computation are deeply
investigated fields, theory for a FIN model like this does not
exist. I think I have proved that, at least on a theoretical level,
TSP can be solved in O(n

2
) time and hence P=NP. The key

issue is whether this arrangement is technically feasible or not
in which case perhaps it will remain like an inconsequential
oddity (gedankenexperiment). If such a roughly outlined
computer network or machine is technically feasible and it
could be made, it will be made, perhaps sooner than expected.
Other modern devices such as drones, inexpensive, with fast 3-
D mobility and intercommunication in real time, seem really
intended to replicate our device model in the most
straightforward and effective way, to the extent that a drone
computing model could be founded and developed. Perhaps by
then we might not know yet whether an efficient algorithm in
TM could be implemented but... would it really matter?

International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 72

www.IJSEI.com Paper ID: 77618-09 ISSN: 2251-8843

REFERENCES

[1] Seth Lloyd, "Ultimate physical limits to computation",
Nature 406, 1047–1054 (31 August 2000).

[2] Michael Held and Richard M. Karp, "A dynamic programming approach
to sequencing problems", Journal for the Society for Industrial and
Applied Mathematics 1:10. 1962.

[3] Sanjeev Arora and Boaz Barak, "Computational complexity. A modern
approach", Princeton University. Downloadable version from January
2007. pp., 50-55.

[4] B. Jack Copeland. "The Church-Turing Thesis". Stanford Encyclopedia
of Philosophy, 1997 (substantially revised in 2017).

[5] William I. Gasarch, "The P vs. NP poll". SIGACT News 33 (2) June
2002: 34-47.

[6] Arunodhayan Sam Solomon D, Melwin, Banu, Sashikala. "Superiority
of the Human Brain over the Computer World in terms of Memory,
Network, Retrieval and Processing". American Journal of Engineering
Research, volume-03, Issue-05, pp-230-239. 2014.

[7] Enrique L. Dáder, Luis Soria Romero, Luis C. Yepes, "What Turing
stated, what he really meant and what others understood", unpublished.

	I. The Model‎
	II. The idea behind
	III. Analyzing complexity in a FIN model
	IV. Outlining a real device in practice
	V. Upon the equivalence between the Extended Church-Turing Thesis and P=NP
	VI. P, NP and beyond
	VII. Conclusions
	References

