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Abstract- Traveling salesman problem (TSP for short) is 
perhaps the most widely known and deeply investigated 
problem in computation. Given a set of cities, the simple goal 
is to find the cheapest way of visiting all cities and returning to 
the starting one. The optimal (in case of a simetric euclidean 
TSP the shortest) path from the starting city to itself through all 
the remaining cities is, in general, only one from the (n-1)!/2 
set of possible tours or circuits. In this paper we present a 
hardware device model solving any instance of TSP in O(n

2
) 

time. In section 1 we go directly to the device model and prove 
mathematically its validity. In section 2 we explain the basic 
ideas behind the physical model. In section 3 we analyze 
complexity in such a device. In section 4 we outline the key 
aspects to put into practice the theoretical model in a feasible 
device. In section 5 we claim an almost sure equivalence 
between the Extended Church-Turing thesis and the conjecture 
P=NP. Finally in section 6 we discuss interesting implications 
in the field of computational complexity with special regard to 
the widely believed conjecture P≠NP. 

TSP is one of those so intractable problems that the best, 
perhaps the only, way to solve is to get somebody else to solve 
it, if possible a "blind" law of nature, let´s say gravitation or 
electromagnetism.  

Keywords- Computational Complexity, TSP Problem, P versus 

NP, Church-Turing Thesis, Network Computing  

 

I. THE MODEL   

Let be S a set of n emitter and receiver devices (e.g. 
computer network, cellular phones, etc., from now on cells) at 
any configuration in a 3-dimentional space. All cells are 
directly linked to each other whiteout antennas or intermediate 
devices of any kind and every cell can perform the usual 
operations, receiving, processing and sending a string of bytes, 
at the same speed. Now, any cell, let´s say cell 1, sends in t=t0 
its own number (1) to the remaining cells of the set.  Every 
time a cell receives a string, appends its own number to the 
string and rebroadcasts it unless its own number is already in 
the string, thus avoiding redundant loops and subtours. 

Proposition: The first string (A straightforward reasoning 
assures that in fact not one but two n-strings will arrive in first 

position simultaneously with the same stored sequence in 
reverse order) of length n to reach cell 1 in t = t1 is the shortest 
path from 1 to itself through all points of S-{1} and c(t1-t0) is 
the optimal tour length (c = speed of light), as we can state with 
no loss of generality that operation inside each cell takes no 
time. 

Lemma 1: Every string of length n arriving to 1 is: 1,σ(S-
{1}) i.e., element {1} at first position followed by a 
permutation of S-{1}. 

Proof: Every string of length n reaching cell 1 started in 1 
and has passed only once through each one of the n-1 
remaining members of the set. Had it passed twice the string 
would not have been sent so the string would not have reached 
cell 1. Had it skipped any and the string would not have length 
n. 

Lemma 2: Every possible permutation 1,σ(S-{1}) will reach 
1 in finite time. 

Proof: Every cell appends only once its number to every 
string and every string contains only once every cell, so given 
that every string begins with 1 and n is finite every 1, σ(S-{1}) 
string will reach 1 after n steps. 

Lemma 1 and 2 prove that every tour reaches cell 1 and 
every n-string reaching cell1 is a tour. Now suppose the first n-
string to arrive to 1 in time t and tour distance d is not the 
optimal tour i.e. the tour of minimum distance. Hence the 
optimal tour with tour distance d´ will reach 1 in t´ > t  but that 
is impossible given that:  t´= d´/c, d´< d and c constant. q.e.d. 

 

II. THE IDEA BEHIND 

How long it takes to solve the traveling salesman problem? 
It takes as long as it takes to the salesman himself to travel the 
optimal path. However, (n-1)! salesmen are required. Let´s see 
it: Each salesman takes a table, a tour sequence with n boxes to 
be filled out with the number of the cities he passed trough 
(Not necessarily he, but the table itself, or more accurately, the 
information stored at the table). So in the beginning n-1 
salesmen leave at the same time the first city (say city one) 
bound for the remaining cities. In their tables the first box is 
filled with number one and all other boxes remain empty. 
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Whenever a salesman reaches a city the information stored at 
his table is copied to the n-1 tables of n-1 new salesmen 
(Obviously the arriving salesman could continue his travel thus 
reducing number of new salesmen needed to n-2 but that is 
completely irrelevant to our purpose). These n-1 salesmen 
append the number of their city to the table, leave their city 
bound for n-1 cities and so on and on. There is one important 
exception: No salesman leaves a city when its number is 
already stored at the arriving table. 

Is almost trivial to prove that: 

1) The first salesman to reach the starting city with a full n 
table has traveled through the optimal path, optimal path that 
has been stored at his table. 

2) The optimal tour length is: time from the starting city 
multiplied by speed. 

Salesman himself has solved salesman problem and the 
certificate is in salesman´s hand: The table of the n cities in the 
very order his table passed trough. 

Obviously some assumptions must be made to assure the 
accuracy of the result: 

1) All salesmen move at the same constant speed. 

2) Time taken in copying and, when required, appending 
data to the tables is zero. Or at least is the same for every 
salesman at any city. Anyway this time must be negligible in 
the sense that is less than the time taken to travel between the 
two closest cities in the set, not a challenging assumption 
indeed. 

Now, the well-known drawback, the very bottleneck of this 
approach is: when n grows the number of salesmen required 
grows exponentially until it reaches mammoth amounts of 
them even for humble sets of cities. Second drawback: The 
longer the path the longer the waiting time (The problem of the 
tour length is almost negligible (almost is not absolutely, see 
below) given that the set can always be resized with a change 
of scale shrinking distances while keeping relative positions.).  

So all we need to improve our approach to TSP is to get 
very fast salesmen in industrial quantities. Do we have? Do we 
have an almost infinite supply of salesmen traveling at speed of 
light? We do. Photons. This brings us back to section 1. 

 

III. ANALYZING COMPLEXITY IN A FIN MODEL 

The model consists of a network of n fully interlinked 
Turing Machines (from now on Fully Interlinked Network, FIN 
for short). Worst case complexity of the model is easy to state: 
When the first n-string reaches the starting city three simple 
operations has been made n times: sequential search, O(n), and 
insertion, O(1) if required, plus operations intended for moving 
strings from/to ports, O(n). In order to preserve assumption 2 
one of the following arrangements must be taken:  

1) Keep always n+1+n cycles of running time to perform 
operations no matter if these cycles are used or they are not. 
   

2) Set strings of n zeros from the beginning and replace 
zeros as required.  

Thus in both cases worst, best and average complexity 
turns out to be O(n)*[O(n)+O(1)+O(n)]->O(n)*O(n)->O(n

2
). 

Why is FIN model so efficient? It is so efficient -might be 
thought- because is a set of n TM´s working in parallel 
computation. Not at all. At the heart of a TM  each tick from its 
clock allows to perform one and only one basic operation. At 
the heart of the universe each heartbeat of time allows infinite 
operations. A single salesman traveling n! tours or n! salesmen 
traveling one tour in turn is perfectly equivalent and perfectly 
ruinous in terms of efficiency. Why not n! salesmen traveling 
at a time? Is the universe a TM? Sure not. It would be better to 
say that Universe is a Super-TM. Universe can perform an 
unbounded number of operations during the same period of the 
time a TM performs one. Even more: shrinking the duration of 
a TM tick inexorably finds unreachable physical bounds, 
between others, speed of light [1]. However we don´t even 
know if there is something like a tick in the universal clock and 
in case yes which its duration is. And yes, as a matter of fact, 
we can improve the performance of an algorithm running in a 
single TM by adding new TM´s working together in parallel 
mode. But adding a new TM would be (as its best) equal to 
duplicate the clock frequency i.e. the number of ticks per 
second. Something useless when the number of operations to 
perform grows exponentially with the size of the input. What 
makes the difference is: In parallel computation model adding 
one more cell speeds the running time in at most a factor 2. In 
our network computation model adding one more cell speeds 
running time in a factor n. The same factor in which adding a 
new city to a TSP instance increases its complexity. Not only a 
quantitative change but a qualitative one.  

Could this computation device be simulated by a TM? Of 
course. In fact, the underlying idea of Held Karp algorithm [2] 
performs exactly that simulation. However it runs in O(2

n
n

2
) 

time (As a matter of fact from 1962 no one has been able to 
improve such performance with a better exact algorithm). In 
other words, there exists a physically realizable computation 
model that presumably cannot be simulated by a TM with 
polynomial overhead. Perhaps this has nothing to do with 
classic computation but with a brave new world, but all that 
will be further addressed. 

 

IV. OUTLINING A REAL DEVICE IN PRACTICE 

Now, let´s go back to Earth and let´s try to figure out how 
this device could be implemented in practice. 

The first observation to be made from a practical point of 
view concerns that so seemingly unfeasible idea: For each 
instance of the problem we must arrange physically in space a 
set of cells or computers, integrated circuits, RAM´s or 
whatever it be. But our hardware, like it or not, is nothing but a 
TM network with their interlinked devices in a concrete 
position in a physical space. Could we emulate this machine 
with some feasible and familiar hardware tool while keeping its 
interesting skills? I think so. 
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Two different approaches can be devised in order to 
replicate usefully the model: 

1) A set of electronic interlinked devices packed as closely 
as semiconductor chip makers usually do. 

2) A conventional computer network. It could be 
implemented with some technical adjustments in a global 
system like internet. This network with five billions 
interconnected devices provides boundless possibilities in order 
to solve unprecedented instances of the TSP and therefore of 
other NP problems. 

In both cases n devices/computers are required. And in both 
cases their spatial configuration is meaningless at all if we 
make sure the transmission time between each other is exactly 
the same. The underlying idea here is to translate distance into 
time. Then the spatial configuration of the instance could be an 
input to be stored in its digital memory. Why? Because every 
device can delay the sending of each string to the remaining 
devices a given amount of time as a linear function of the 
physical distances in the TSP instance. Thus configuring n TM 
in physical space is equivalent to store their n(n-1)/2 distances 
in the digital space of the machine´s RAM. In fact every device 
needs to store only n-1 distances i.e., its own row from the 
matrix of distances. Better yet if, once and for all, in the very 
configuration procedure each device stores directly the, let´s 
say, timetable of dispatching times. 

Now, suppose we have our n device/computer network 
configured, i.e., each computer has stored its own row of  n-1 
distances from the table of distances in its memory translated to 
delaying times. Once any of them chosen to begin with, let´s 
say computer 1, we set the following straightforward 
procedures: 

Algorithm for computer 1: 

          -Send 1 to the net. 

            -Waiting to receive a string. 

            -A string is received. 

            ¿Has n length? 

                No: Keep waiting 
                Yes: Output: The n length string. End of program. 

Algorithm for any other computer m: 

            -Waiting  

            -A string is received. 

            -Is m in the string?  

 Yes. Keep waiting. 
 No. Store the last byte (say k) of the string. Search in 

the timetable the corresponding delay to that byte. (Distance m-
k). Append m to the string. 

¿Has the string n length?  

 No. Store it to the buffer/dispatching queue. 

 Yes. Search in the timetable the corresponding delay 

to the distance  m-1 and add this delay to the previous one. 

Store it to the buffer/dispatching queue. 

 Send at scheduled time. 
 -Keep waiting. 

Some issues and technical challenges still need to be 
addressed. 

1) How to match distances (distances are floating points) to 
time delays in ticks from the clock (ticks are integers) i.e. how 
to round numbers without jeopardizing the accuracy of the 
overall process. 

2) How to deal with exactly simultaneous arriving or 
departing strings. 

3) How to avoid unintended time delays when a string 
reaches a device before the previous string has been entirely 
dispatched. 

Solution for the first problem would be resizing if 
necessary. Given that any set of points can be resized ad 
libitum and distances increased or decreased, a trade-off 
between accuracy and efficiency must be taken. 

For the second issue the simplest approach could be to set a 
universal delay of r cycles for every device whenever it gets a 
string, in order to ensure enough time for data processing and 
orderly dispatch at the scheduled time. This general delay 
would imply an increase of n*r cycles in execution time. But 
O(nr)->O(n) and O(n)+O(n

2
)->O(n

2
). Once more, network 

processing pays off. 

In respect the third issue I cannot envisage another solution 
but a (most likely) exponential space of memory, the very 
bottleneck of this approach.  

One could wonder if it´s worth making the effort to 
synchronize an n-computer network (the good news here is that 
such a device is already created) or to design and build an n-
device machine for a n-input problem. The answer would be 
yes indeed if only for TSP, where fields of such a paramount 
importance as ongoing work in genome sequencing are 
involved, but the fact that any NP complete problem can be 
reduced (i.e. translated) to another one in polynomial time [3] 
makes it a general purpose machine. In respect of hardware 
needs aside from the required space of memory, CPU resources 
are kept to a minimum. Each device needs only to operate over 
n sized strings of integers the simplest imaginable procedures. 

Anyway, electronic requirements, computer architecture 
and further technical details are well beyond my capabilities in 
the subject. 

  

V. UPON THE EQUIVALENCE BETWEEN THE EXTENDED 

CHURCH-TURING THESIS AND P=NP 

Aside from any practical purpose, our hardware device 
model allows us to make some interesting statements that we 
can infer from. 

Since the mere Church-Turing thesis states that Turing 
machines can simulate any computational device, but perhaps 
at the cost of an exponential overhead in time and/or space, the 
Extended Church-Turing Thesis (ECT for short) says that 
every physically realizable computational device can be 
efficiently simulated by Turing machines[4]. Unlike the 
Church-Turing Thesis, which computer science general 
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agreement believes to be right, the Extended Church-Turing 
Thesis is widely believed false just as it happens with the 
P=NP conjecture[5]. 

Now we can prove that:  

1) Extended Church-Turing thesis implies P=NP.  

As shown, exists a physically realizable computation model 
solving TSP in O(n

2
) time. If ECT thesis holds, this 

computation model can be simulated by a TM with polynomial 
overhead, i.e., in O(n

2
)

k
 time, so it follows that P=NP. q.e.d. 

2) If Church-Turing thesis holds, P=NP implies Extended 
Church-Turing thesis. Indeed if P=NP, anything computable is 
solvable in polynomial time. If the mere Church-Turing thesis 
(widely tested and believed to be true) holds, every physically 
realizable model can be simulated by a Turing machine. If it is 
computable in O(n

k
) time, it follows that the ECT is true. q.e.d. 

Thus, if Church-Turing thesis holds, ETC and P=NP are 
equivalent. 

 

VI. P, NP AND BEYOND 

After all, things would be really easier if P=NP let´s say in 
the classical sense. (From now on P=NP c.s.) P=NP c.s. means 
an efficient algorithm exists solving TSP in a TM computation 
model. But for years we have been waiting for someone to turn 
up with an efficient algorithm or for someone to turn up with a 
proof that such algorithm does not exist. We have surrendered. 
In our approach we really do nothing. It is not an algorithm, it 
is not a simulation, it´s the very speed of light traveling the 
very paths of the set solving the problem in real time. We have 
thrown in the towel, we have looked for someone in nature to 
do the task, speed of light, and told her: I can´t deal whit this. 
Do it yourself. So meanwhile ¿Is TSP solvable in polynomial 
time O(n

c
) in a single TM? We Don´t know.  

However, I dare to make the following remarks: 

First:  We have proved that assuming Church-Turing thesis, 
P=NP c.s. implies the Extended Church-Turing thesis (One 
cannot fail to note that the Extended form of the Church-Turing 
thesis has nothing to do with Church/Turing.[7]) and, as 
shown, it seems unlikely that an efficient algorithm in TM 
could simulate our device model. A proof that such a device 
model cannot be simulated by a TM in polynomial time would 
invalidate the extended form of CT thesis and then P≠NP c.s.  

Second: If the answer is yes (P=NP c.s.) and parallel 
computation thesis holds true, ¿is it solvable in O(n) time in a 
parallel computation mode? But what would that mean? Would 
it mean that we could turn up with the optimal tour before the 
salesman, traveling at speed of light, have passed through? 
Would it mean that something somewhere someway moves 
faster than light? That would be nonsense. Then I conjecture 
not. I conjecture such an algorithm for a single TM could exist 
only if there is in the universe some v > c. I can´t even figure 
out where to start proving that impossibility by means of such a 

bizarre statement, rooted not (only) in mathematical arguments 
but in the deepest structures of physical nature of reality. 

The outstanding and visionary works by Turing, Church, 
Gödel and others giants of science in the 1930´s allowed us to 
take full advantage of a model that became quickly standard 
and paradigm of computation. Eighty years later, the time has 
come to ask the question whether this familiar paradigm fully 
encapsulates everything machines can do or, on the contrary, 
this model has become outdated in view of the hardware tools 
nowadays available. In particular with regard to unexplored 
areas of connectivity and intercommunication in running time 
between algorithms instead of a single algorithm running 
disconnected from outside world (i.e., disconnected from other 
algorithms) and self-absorbed from start to finish.   

At this point it´s worth wondering why a "natural brain" is 
much more efficient than an electronic one [6] performing 
certain kind of tasks, pattern recognition, future forecasting and 
so on, tasks that share in common the following feature: They 
don´t fit well with our computation model of a step-by-step 
instructions set. Instead, it seems that the power of a human 
brain lies, not in the, let´s say, computational capacity of 
neurons themselves but in their interlinking density and speed. 

Our old CPU, or TM, or RAM approach is a general 
purpose, ideal tool to find exact solutions in unbounded time 
with complete information (By no means am I stating that our 
TM model cannot turn up with an acceptable solution within a 
(well...) reasonable period of  time, as is proved, for example, 
by very efficient heuristic algorithms for TSP. I limit myself to 
remind what TM is designed to and what is mainly for). For 
evolutionary reasons our brain became a general purpose 
machine to quickly find with sketchy information acceptable 
answers for straightforward, hard and even imposing 
challenges. Joining the best of both worlds would be such a 
giant leap that it would indeed improve dramatically, perhaps 
in a dreadful manner, our capacity to shape world and 
ourselves. 

 

VII. CONCLUSIONS 

As far as I know, while single TM computation, parallel 
computation or network standard computation are deeply 
investigated fields, theory for a FIN model like this does not 
exist. I think I have proved that, at least on a theoretical level, 
TSP can be solved in O(n

2
) time and hence P=NP. The key 

issue is whether this arrangement is technically feasible or not 
in which case perhaps it will remain like an inconsequential 
oddity (gedankenexperiment).  If such a roughly outlined 
computer network or machine is technically feasible and it 
could be made, it will be made, perhaps sooner than expected. 
Other modern devices such as drones, inexpensive, with fast 3-
D mobility and intercommunication in real time, seem really 
intended to replicate our device model in the most 
straightforward and effective way, to the extent that a drone 
computing model could be founded and developed. Perhaps by 
then we might not know yet whether an efficient algorithm in 
TM could be implemented but... would it really matter?
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