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Abstract-The growth of a diagonal fatigue crack in an I-shaped 
transversely stiffened steel plate girder loaded under 
predominantly shear may degrade the shear strength of an 
individual web panel. Analytical expressions were derived for 
the residual shear force capacity of a cracked web panel. 
Several limit states were considered including shear yielding, 
web buckling, brittle fracture, and impending ductile failure. 
The expressions were validated with finite element analyses 
and employed to investigate the governing limit states and 
associated strengths of various web panel geometries. Web 
buckling was found to be the predominant governing limit state 
for realistically sized girders. The formulated expressions may 
be employed in the design and analysis of girders considering 
prescribed diagonal fatigue crack configurations. 

Keywords- plate girder; shear capacity; web panel; fatigue 

crack; residual strength; web buckling; fracture; stability. 

 

I.  INTRODUCTION 

I-shaped steel plate girders form an integral part of slab-
girder highway bridges. These types of girders are constructed 
of individual plates welded together to form an I-shaped cross-
section (see Fig. 1a). The dimensions of the plates are modified 
such that the safest design is achieved while material use is 
minimized. It follows from conventional beam theory that the 
web plate primarily resists internal shear forces while the 
tension and compression flange plates primarily resist internal 
bending moments [1]. 

A major consideration in the design of a girder is the 
avoidance of shear-based limit states including shear yielding 
of the web and web local buckling [2]. The shear force capacity 
of a girder corresponding to shear yielding may be increased by 
enlarging the gross cross-sectional area of the web. Similarly, 
the shear strength of a girder corresponding to web local 
buckling may be increased by modifying the dimensions of the 
web as well as adjusting additional parameters. It can be 
deduced from classical plate theory that the elastic buckling 
strength of a plate loaded under pure shear is maximized if the 
length-to-width ratio of the plate approaches unity [2]. For this 
reason, transverse stiffener plates are generally welded to the 
web and flanges at varying intervals along the length of the 
girder, effectively subdividing the web into individual panels 

bounded by the flanges and stiffener plates (see Fig. 1b) [2]. In 
regions of the girder loaded under predominantly shear, the 
web panels are effectively loaded under pure shear (see Fig. 
1c) [2]. Hence, the modification of the spacings between the 
stiffener plates directly influences the buckling strengths of the 
web panels. 

The ongoing passage of vehicular traffic over a slab-girder 
bridge induces sub-critical cyclic bending moments and shear 
forces within the supporting girders [3]. These forces are 
directly coupled to fluctuating bending and shear stresses 
acting throughout a girder. High concentrations of fluctuating 
stress may form at inherent discontinuities in the girder. These 
discontinuities are generally attributable to flaws in the fillet 
welds connecting the web to the flanges and stiffener plates, 
and may include incomplete fusion, porosity, undercutting, and 
partial penetration [4]. The fluctuating stress concentrations 
may in time cause a pre-existing microcrack to grow into a 
through-thickness macrocrack [5, 6]. 

 

Figure 1.  (a) I-shaped steel plate girder cross-section, (b) girder loaded under 

predominantly shear and subdivided into individual web panels by transverse 
stiffener plates, (c) web panel loaded under pure shear. 

In regions of a girder loaded under predominantly shear, a 
fatigue crack may continue to propagate under mixed-mode 
loading [7, 8]. In the most general case, a fatigue crack may 
initiate in a corner of a web panel at the junction of a flange 
and transverse stiffener plate (see Fig. 2a) [4, 9-14]. Primarily 
opening-mode loading (Mode I) complemented by low values 
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of sliding-mode loading (Mode II) may then cause the crack to 
propagate in a straight line diagonally through the web panel at 
an angle near to 45° relative to the flange (see Fig. 2b) [8, 15]. 
It can be foreseen that the continued growth of the crack may 
adversely affect the shear strength of the web panel, and 
concurrently the overall girder, corresponding to the limit 
states of shear yielding and local buckling. Furthermore, the 
presence of the crack introduces two additional limit states 
including brittle fracture and impending ductile failure [8]. 
Overall, the growth of a diagonal fatigue crack may bring 
about the premature occurrence of elastic limit states in a girder 
[16-22]. 

 

Figure 2.  (a) Girder loaded under predominantly shear with diagonal fatigue 

crack originating at a corner of a web panel, (b) diagonal fatigue crack within 
the web panel displaying the x-y and x’-y’ axis systems. 

Many studies have investigated the influence of cracks and 
other discontinuities on the strength and stability of plate-like 
structures through the use of analytical, numerical, and 
experimental methods [23-36]. Far less research has analyzed 
the effects of through-thickness fatigue cracks on the shear 
strength and stability of plate girders and web panels [37, 38]. 
The bulk of related research has concentrated upon the 
influence of large discontinuities such as holes, slots, and 
copings on the shear strength and stability of beam-like 
structures [39-48]. The post-buckling behavior and associated 
tension field action of uncracked web panels has been 
thoroughly analyzed [49-51]. 

It may be useful for engineers to be able to design or 
otherwise analyze the elastic shear force capacity of plate 
girder web panels for prescribed diagonal fatigue crack 
configurations so as to avoid the occurrence of elastic limit 
states in between bridge inspection periods. The objective of 
this research was to derive analytical expressions for the elastic 
shear force capacity of a cracked web panel corresponding to 
the limit states of shear yielding of the web, web local 
buckling, brittle fracture, and impending ductile failure. This 
research concentrated upon elastic limit states, and the post-
buckling behavior and tension field action of cracked web 
panels was not considered. 

Several assumptions were made with regard to the 
formulation of the capacity expressions. It was assumed that 

the portions of plate girder that the expressions are applicable 
to are loaded under predominantly shear (see Fig. 2a). The 
plate girder itself was assumed to be an I-shaped steel plate 
girder. The individual plates of the girder were assumed to be 
constructed of high-strength low-alloy structural steel [2]. As 
such, the steel was implied to be homogeneous and behave as a 
linear isotropic elastic material [52]. Also, the plates were 
assumed to be sufficiently thin enough for plane stress 
conditions to predominate. In accordance with conventional 
design procedures, the stress fields were derived relative to the 
defined coordinate axis systems and compared to the material 
strength [1, 2]. The web panel itself was assumed to have a 
depth, dw, and a width, s, designating the spacing between the 
stiffener plates (see Fig. 2b). The diagonal fatigue crack of 
length 2a was assumed to be through-thickness and loaded 
primarily by Mode I loading with minimal influence from 
Mode II loading. As such, the crack was assumed to propagate 
in a comparatively straight line from a corner of the web panel 
at an angle θ ≈ 45° relative to the flange (see Fig. 2b) [8]. 

Finite element (FE) analyses were performed using the 
general FE software ABAQUS to validate the capacity 
expressions. Upon validation, the capacity expressions were 
plotted as functions of crack length for various web panel 
geometries. Conclusions were drawn regarding the different 
capacities and limit states associated with the various web 
panel geometries. Finally, the applicability of the shear force 
capacity expressions was demonstrated with a simplified plate 
girder design problem. 

 

II. WEB LOCAL BUCKLING 

A. Approximation of Internal Shear Stress Distribution 

Within Cracked Web Panel 

It was previously acknowledged that a web panel located in 
a region of a girder loaded under predominantly shear is itself 
effectively loaded under pure shear [2]. This configuration is 
manifested in the form of uniform shear stress, τxy,s, acting 
along the perimeter of the web panel (see Fig. 1c). The 
perimeter shear stress is directly linked to and approximately 
equal to the internal shear stress within the web panel. Also, 
τxy,s is directly coupled to the external shear force, Vs, acting at 
that particular region of the girder (see Fig. 1b). The 
distribution of internal shear stress along the depth of the web 
is nearly uniform, and thus τxy,s may be approximated as the 
magnitude of Vs divided by the gross cross-sectional area of the 
web, expressed as [2] 

ww
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s
sxy

td

V

A

V
,                                                                (1) 

where Aw is the gross cross-sectional area of the web and tw is 
the thickness of the web. The importance of τxy,s lies in its 
direct link to the internal shear stress, which itself has a direct 
influence upon the elastic buckling strength of the web panel 
[53]. 

The presence of a diagonal crack originating at a corner of 
a web panel (see Fig. 2b) may serve to influence the magnitude 



International Journal of Science and Engineering Investigations, Volume 2, Issue 19, August 2013 3 

www.IJSEI.com           Paper ID: 21913-01 ISSN: 2251-8843 

and distribution of the internal shear stress, thus affecting the 
buckling strength of the web panel. This process may be 
elucidated in two steps. First, the internal shear stress field, 
τxy,c, within the cracked web panel is developed based upon τxy,s 
(see Fig. 3a). Second, τxy,c influences the buckling strength of 
the web panel (see Fig. 3b). It can thus be foreseen that the 
formulation of an expression for the elastic shear force capacity 
of a cracked web panel associated with the limit state of web 
local buckling requires an expression for τxy,c. 

 

Figure 3.  (a) Internal shear stress influenced by perimeter shear stress, (b) 

critical magnitude of perimeter shear stress corresponding to web buckling as 
influenced by internal shear stress. 

The internal shear stress field, τxy,c, within a cracked web 
panel may be approximately determined using elasticity theory. 
The geometrical boundary conditions associated with the actual 
configuration of a diagonal crack originating at a corner of the 
web panel are inexorably complex, and a closed-form solution 
is difficult to obtain (see Fig. 2b) [52]. However, two 
observations are made regarding the geometrical boundary 
conditions of the crack and web panel. First, both ends of the 
crack are effectively restrained from opening. Second, the 
perimeter of the web panel formed by the flanges and stiffener 
plates is much more rigid than the web. As a consequence, the 
diagonal crack may be approximated as lying within the web 
plate and bounded by an outside margin of additional web plate 
representing the rigidity of the flanges and stiffener plates, thus 
resolving the original three-dimensional configuration into a 
two-dimensional configuration (see Fig. 4a). A further 
approximation may then be made in assuming that the previous 
configuration is nearly equivalent to a diagonal crack lying 
within an infinite plate. The problem is thus reduced to that of 
determining the shear stress field around a central crack 
inclined at an angle θ ≈ 45° and loaded by far-field shear stress 
equal in magnitude to τxy,s (see Fig. 4b). 

 

Figure 4.  (a) Two-dimensional web panel configuration, (b) infinite plate 

web panel configuration. 

The shear stress field around the inclined central crack (see 
Fig. 4b) is determined by superimposing the stress fields of 
three distinct cases [8]. The first case consists of an infinite 
plate without the crack loaded by far-field shear stress equal in 
magnitude to τxy,s (see Fig. 5a). The second case consists of an 
infinite plate with the inclined central crack loaded by crack-
face normal stress, σ’y (see Fig. 5b). The third case consists of 
an infinite plate with the inclined central crack loaded by 
crack-face shear stress, τ’xy (see Fig. 5c). The magnitudes of σ’y 
and τ’xy are obtained from the state of stress of an element 
within the first case that has been transformed to the x’-y’ axis 
system from the x-y axis system. 

 

Figure 5.  (a) Case 1: infinite plate without crack loaded by far-field shear 

stress, (b) Case 2: infinite plate with diagonal crack loaded by crack-face 

normal stress, (c) Case 3: infinite plate with diagonal crack loaded by crack-
face shear stress. 

Considering the first case with respect to the x-y axis 
system, an infinitesimal element at any location within the 
infinite plate is under a state of pure shear equal in magnitude 
to τxy,s (see Fig. 6a). Rotation of the element by an angle θ to 
the x’-y’ axis system results in the transformed normal and 
shear stresses σ’y and τ’xy (see Fig. 6b) given by [1]: 

 

)2sin(' ,  sxyy                                                                (2) 

)2cos(' ,  sxyxy                                                               (3) 

 

Figure 6.  (a) Infinitesmal element under a state of pure shear, (b) rotated 

element with transformed normal and shear stresses. 

     These normal and shear stresses are assumed to act upon the 
crack-faces of the second and third cases, respectively (see 
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Figs. 5b, c). The stress field for each of these two cases is next 
determined. 

In accordance with elasticity theory, the plane stress field is 
expressed in terms of the Airy stress function, F(x,y), as [52] 
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The Airy stress function must satisfy the applicable boundary 
conditions and the governing biharmonic equation of plane 
elasticity given by [52] 
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such that the equilibrium equations and Beltrami-Michell 
compatibility equations are identically satisfied. The presence 
of a crack introduces local disturbances in the stress field 
which complicates the determination of a suitable stress 
function. The stress field around a crack may then be 
determined using a subset of the complex potential method 
called the Westergaard function method [54]. In this method, 
the Airy stress function is expressed in terms of the 
Westergaard function, Z(ζ), for Mode I loading as [8] 

III ZyZF ImRe                                                              (6) 

and for Mode II loading as [8] 

IIIIII ZyZyZF ReImRe                                             (7) 

where 
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      The terms ZI and ZII are the Westergaard functions for 
Mode I and Mode II loading, respectively. Also, ζ is the 
complex variable ζ = x + iy. 

The stress fields for the second and third cases are 
determined by employing the Westergaard stress functions 
associated with crack-face normal stress and crack-face shear 
stress, respectively, given by [55, 56] 
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      It is noted that these stress functions are given with respect 
to the x’-y’ axis system. Substituting (6) into (4) results in the 
complete stress field for the second case relative to the x’-y’ 
axis system, given by [8] 

IIcx ZyZyx 'Im'Re)','(' 2,   

IIcy ZyZyx 'Im'Re)','(' 2,                                        (11) 

Icxy Zyyx 'Re')','(' 2,   

      In a similar manner, substituting (7) into (4) results in the 
complete stress field for the third case relative to the x’-y’ axis 
system, given by [8] 

IIIIcx ZyZyx 'Re'Im2)','(' 3,   

IIcy Zyyx 'Re')','(' 3,                                                  (12) 

IIIIcxy ZyZyx 'Im'Re)','(' 3,   

The summation of (11) and (12) results in the superimposed 
stress field obtained from the second and third cases, given by 

3,2,, '')','(' cxcxcx yx    

3,2,, '')','(' cycycy yx                                                  (13) 

3,2,, '')','(' cxycxycxy yx    

       The superimposed shear stress field, τxy,ca, obtained from 
the second and third cases is transformed to the x-y axis system 
from the x’-y’ axis system by substituting (13) into the 
following transformation expression [1]: 
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where the coordinates of the x’-y’ axis system are expressed in 
terms of the coordinates of the x-y axis system as 

 cossin' xyx                                                             (15) 

 sincos' xyy                                                              (16) 

       Finally, the complete shear stress field around the inclined 
central crack with respect to the x-y axis (see Fig. 4b) is 
obtained by superimposing (14) with the shear stress field, τxy,s, 
of the first case: 

sxycaxycxy yx ,,, ),(                                                      (17) 

The full expansion of (17) is quite lengthy and consists of 
real and imaginary terms. However, (17) is greatly simplified if 
θ ≈ 45°, thus reducing the expanded form of (17) to the 
following: 
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Resolving the imaginary term results in 
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where, 
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       Equation (19) represents the complete shear stress field 
around the central crack inclined at θ ≈ 45° and lying within 
the infinite plate loaded by the far-field shear stress τxy,s (see 
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Fig. 4b). In accordance with the aforementioned 
approximations, the shear stress field obtained from this 
configuration is approximately equivalent to the internal shear 
stress field obtained from the actual configuration of a cracked 
web panel with the diagonal crack originating at a corner of the 
web panel (see Fig. 3a). Importantly, it is noted that (19) is in 
part a function of τxy,s, and is therefore directly coupled to Vs by 
way of (1). 

Close examination of (19) reveals that the distribution of 
τxy,c within a cracked web panel is quite complex. Magnitudes 
of shear stress much greater than τxy,s are especially prevalent in 
the local region around the crack. The distribution of τxy,c may 
be approximated by subdividing the web panel into equal-sized 
rectangular elements. The total number of elements, Ne, are 
arranged such that the number of element rows, re, are equal to 
the number of element columns, ce. Each element is designated 
by its row number, r, and column number, c, relative to the 
origin of the crack (see Fig. 7a). Also, each element is loaded 
under pure shear designated by τxy,e-rc. The magnitude of τxy,e-rc 
for each element is developed based upon τxy,c. Specifically, the 
magnitude of τxy,e-rc for each element is the value of τxy,c at the 
central point of the element (see Fig. 7b). It can be foreseen 
that a greater number of elements results in a higher degree of 
accuracy in describing the actual distribution of τxy,c. 

 

Figure 7.  (a) Web panel subdivided into rectangular elements displaying row 

and column numbers, (b) individual panel element loaded under pure shear. 

The magnitude of τxy,e-rc for any element is expressed in 
terms of τxy,c by setting x and y equal to the coordinates of the 
central point of the element, xrc and yrc, expressed as 
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where re and ce are expressed in terms of Ne as 

eee Ncr                                                                  (24) 

and, 
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      Also, θ in (15), (16), and (19) is modified to take into 
account negative values of x: 
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      Thus, the value of τxy,e-rc for any element is determined by 
substituting r, c, (24), and (25) into (22) and (23), and 
introducing the results into (19), implicitly expressed as 

 rcrccxyrcexy yx ,,,  
                                                  (27) 

       It is observed that since τxy,e-rc is a function of τxy,c, it is 
therefore also a function of τxy,s. Altogether, the varying values 
of τxy,e-rc for each element represent an approximation of the 
internal shear stress distribution, τxy,c, within the cracked web 
panel. 

B. Buckling Strength of Cracked Web Panel 

A closed-form solution for the elastic buckling strength of 
the cracked web panel is difficult to obtain using classical plate 
theory [2, 53]. This is primarily due to the non-uniform internal 
stress field caused by the presence of the crack, as well as the 
complex geometrical boundary conditions introduced by the 
crack. The Rayleigh-Ritz energy method employs the principle 
of stationary potential energy to approximate the buckling 
strength when complex boundary conditions are present [53]. 
In this method, the buckled shape of the cracked web panel is 
assumed to take on a form described by an out-of-plane 
displacement function, w(x”, y”), expressed in terms of the x”-
y” axis system with the origin at the central point of the web 
panel (see Fig. 8). The displacement function satisfies all or 
most of the geometrical boundary conditions and includes an 
arbitrary set of variables, Ai, which control the shape of the 
displacement function, in the form 
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where n is the number of degrees of freedom of the 
displacement function. The total potential energy, П, of the 
panel is then formulated, expressed as [53] 

dSuTdVU
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where U is the strain energy density function, V is the volume 
of the panel, Ti are the applied surface tractions, ui are the 
displacements caused by the tractions, and S is the surface over 
which the tractions are applied. It is evident that the 
formulation of П essentially couples w(x”, y”) with the 
externally applied stress, τxy,s (see Fig. 8). The variation of П 
with respect to Ai is then set to zero, shown as [53] 

0


iA

                                                                             (30) 

       It follows that the critical external stress, τ’cr, enabling this 
equilibrium is an initial estimation of the buckling strength of 
the cracked web panel [53]. 
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Figure 8.  Cracked web panel with externally applied perimeter shear stress 

and corresponding out-of-plane displacement function. 

The initial magnitude of τ’cr may be further developed by 
employing the web panel elements and the previously derived 
approximate internal shear stress distribution, τxy,e-rc. 
Specifically, the overall initial cracked web panel buckling 
strength is assumed to be uniformly distributed among each of 
the web panel elements. The strength of each element is further 
assumed to be degraded by the ratio of τxy,s to τxy,e-rc. In this 
way, the buckling strength of each element, τcr,e-rc, is equal to 
the product of the ratio of τxy,s to τxy,e-rc and the initial cracked 
web panel buckling strength, divided by the total number of 
elements, expressed as 
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        Each element is thus assumed to buckle when τxy,e-rc equals 
or exceeds τcr,e-rc. The corresponding critical value of τxy,s for 
each element may then be determined. It follows that the final 
estimation of the buckling strength of the cracked web panel, 
τcr, is the sum of the critical values of τxy,s. 

An expression for w(x”, y”) for the overall cracked web 
panel is first required for the formulation of П and the 
determination of τ’cr. The geometrical boundary conditions 
concerning the edges of the web panel are conservatively 
assumed to be simply supported  [2]: 

0",
2









y

s
w       0",

2









 y

s
w        

0
2

," 






 wd
xw       

0
2

," 







 wd

xw
 

       (32) 

       The approximation is made that w(x”, y”) for the cracked 
web panel is nearly identical to w(x”, y”) for an uncracked web 
panel. The geometrical boundary conditions concerning the 
diagonal crack are therefore neglected, and w(x”, y”) is 
formulated based only upon the boundary conditions given by 
(32). In essence, the approximation is made that the initial 
buckling strength of the cracked web panel is dependent only 
upon the external shear stress, with w(x”, y”) remaining 
identical to w(x”, y”) for the uncracked web panel. A unilateral 
displacement function of the following form satisfies the 
boundary conditions given by (32): 





















wd

y

s

x
Ayxw


coscos)","(                                        (33) 

The formulation of П is developed by substituting (33) and 
τxy,s into (29), implicitly expressed as [53] 
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where, 
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and, 
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Also, the term D is the web panel rigidity given by [2] 
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D                                                                 (37) 

where E is the modulus of elasticity and ν is Poisson’s ratio. 
The initial cracked web panel buckling strength is then 
determined by introducing (34) into (30), solving for τxy,s, and 
dividing the result by tw, giving 
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where the arbitrary term A in (33) vanishes in accordance with 
calculus of variations [53]. 

The initial cracked web panel buckling strength is further 
refined by determining the buckling strengths of the web panel 
elements and summing the associated critical values of τxy,s. 
The external stress applied to each element is the previously 
derived pure shear stress τxy,e-rc given by (27) (see Fig. 7b). 
Equation (27) may be rewritten to be explicitly expressed in 
terms of τxy,s as 



International Journal of Science and Engineering Investigations, Volume 2, Issue 19, August 2013 7 

www.IJSEI.com           Paper ID: 21913-01 ISSN: 2251-8843 

 1,,  rcsxyrcexy C                                                      (39) 

where Crc is a constant directly derived from (19) and partially 
dependent upon r, c, xrc, and yrc of a given element, expressed 
as 
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The critical value of τxy,s corresponding to buckling of each 
element is determined by setting τxy,e-rc = τcr,e-rc, introducing 
(38) and (39) into (31), and solving for τxy,s, giving 
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       Finally, the approximate buckling strength of the cracked 
web panel is determined by taking the sum of τcr,e-rc for all of 
the elements, expressed as 
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The term τY is the shear yield strength of the web panel steel 
given by [2] 
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Y
Y


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where σY is the yield strength of the web panel steel. Setting τcr 
= τxy,s, substituting (42) into (1), and solving for Vs results in the 
shear force capacity of a cracked web panel corresponding to 
the limit state of web local buckling: 

wwcrcr tdV                                                                     (44) 

 

III. SHEAR YIELDING 

The growth of the diagonal fatigue crack originating at a 
corner of the web panel reduces the gross cross-sectional area 
of the panel (see Fig. 9). From (1) it can be deduced that the 
reduction in gross cross-sectional area serves to decrease the 
shear force capacity corresponding to shear yielding. The 
reduced web panel depth, dwc, above the crack tip is given by 

sin2add wwc                                                          (45) 

       Substituting (45) for dw and τY for τxy,s in (1), and solving 
for Vs results in 

  sin2adtV wwYcr                                                    (46) 

       The internal shear stress along dwc achieves shear yielding 
first at the crack tip and last at the perimeter of the web panel. 
The critical value of τxy,s corresponding to Vcr thus occurs when 
τxy,s equals the shear yield strength of the web panel steel, given 
by 

Ycr                                                                               (47) 

 

Figure 9.  Cracked web panel with reduced web panel depth. 

 

IV. BRITTLE FRACTURE AND IMPENDING DUCTILE FAILURE 

The propagation of the diagonal fatigue crack originating at 
a corner of the web panel (see Fig. 2b) is accompanied by a 
corresponding increase in the stress intensity factor, K, at the 
crack tip. This increase in K introduces two additional limit 
states including brittle fracture and impending ductile failure. 
Brittle fracture is characterized by the sudden rupture of the 
web panel and occurs when the fatigue crack grows to a critical 
length and K equals the critical stress intensity factor, Kc, of the 
web panel steel [8, 57]. Alternatively, impending ductile failure 
is characterized by the growth of the plastic region around the 
crack tip to a critical size and occurs when the crack length and 
K each equal a critical magnitude [57]. 

In accordance with linear elastic fracture mechanics 
(LEFM), the theoretical form of K is given by [8] 

aK o                                                                        (48) 

where σo is the far-field Mode I or II stress acting upon the 
crack. As previously mentioned, the diagonal crack shown in 
Fig. 2b is loaded primarily by Mode I loading with minimal 
influence from Mode II loading when θ ≈ 45°.  Employing the 
principle of superposition, the total stress intensity factor, KT, is 
the sum of the stress intensity factors derived from the Mode I 
and II loading, expressed by [8] 

IIIT KKK                                                                     (49) 

where KI and KII are the stress intensity factors associated with 
Mode I and II loading, respectively. The magnitudes of KI and 
KII for the diagonal crack may be approximated by assuming 
once again that the actual configuration of the diagonally 
cracked web panel (see Fig. 2b) is nearly equivalent to the 
configuration of a diagonal crack inclined at an angle θ ≈ 45° 
and lying within an infinite plate loaded by far-field shear 
stress equal in magnitude to τxy,s (see Fig. 4b). 

The Mode I and II stress intensity factors are derived from 
the state of stress of an element in the previously described 
configuration (see Fig. 4b) that has been transformed to the x’-
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y’ axis system from the x-y axis system (see Fig. 6). The 
normal stress, σ’y, and shear stress, τ’xy, of the transformed 
element are expressed by (2) and (3), respectively. The 
magnitudes of σ’y and τ’xy represent the far-field normal and 
shear stresses, respectively, acting upon the diagonal crack. 
Substituting (2) and (3) into (48) results in expressions for KI 
and KII, shown as 

aK sxyI  )2sin(,                                                        (50) 

aK sxyII  )2cos(,                                                       (51) 

       Under plane strain conditions, Mode I brittle fracture 
occurs when KI exceeds the Mode I fracture toughness, KIc, of 
the web panel steel [57]. Similarly, Mode II brittle fracture 
occurs when KII exceeds the Mode II fracture toughness, KIIc, 
of the web panel steel [57]. 

Given that the crack is concurrently subjected to Mode I 
and II loading, certain critical combinations of KI and KII may 
produce mixed-mode fracture. The interaction between KI and 
KII with respect to KIc and KIIc may be described by a simple 
elliptical model [8], expressed as 
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      Stress intensity correction factors may be used to modify KI 
and KII in (52) to account for the finite dimensions of the web 
panel [58]. However, the length of the diagonal crack is 
expected to remain small in comparison to the web panel prior 
to an elastic limit state being attained, and thus the correction 
factor is neglected. The perimeter shear stress capacity of the 
cracked web panel corresponding to the limit state of brittle 
fracture is determined by introducing (50) and (51) into (52) 
and solving for τxy,s: 
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        (53) 

      It is noted that the use of KIc and KIIc in (50) is conservative 
since plane stress conditions are presumed to predominate 
throughout the web panel, and the actual critical stress intensity 
factors are greater than KIc and KIIc [58]. It follows that the 
substitution of (53) into (44) results in the shear force capacity 
of a cracked web panel corresponding to the limit state of 
brittle fracture. 

The plastic region around the crack tip as induced by the 
Mode I and II loading must remain small in order for KI and KII 
to remain valid [57]. The growth of the plastic region beyond a 
critical size renders the fracture toughness characterization of 
the web panel steel inapplicable. Elasto-plastic fracture 
mechanics (EPFM) must then be employed to describe the 
impending ductile failure [57]. A new limit state may be 
postulated corresponding to a critical plastic region size 
indicating the approximate transition to a ductile failure mode 
(i.e., the transition from LEFM to EPFM). 

The size of the plastic region around the crack tip as 
induced by the mixed-mode loading may be determined by 

superimposing the plastic regions obtained from the Mode I 
and II loadings. Specifically, the two plastic radii along the 
longitudinal direction of the crack as obtained from the Mode I 
and II loadings may be determined and superimposed to obtain 
the mixed-mode plastic radius (see Fig. 10). The critical 
magnitude of τxy,s associated with a critical mixed-mode plastic 
radius indicating impending ductile failure may then be solved 
for. 

 

Figure 10.  Plastic region around the crack tip. 

The near-tip stress field is expressed in terms of KI as [8], 
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     Similarly, the near-tip stress field is expressed in terms of 
KII as [8],  
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      It is noted that the near-tip stress fields are formulated in 
terms of polar coordinates with the origin at the crack tip. The 
variable r is the radius and θp is the angle of r with respect to 
the longitudinal direction of the crack (see Fig. 10). The mixed-
mode radius of the plastic region, rp, is determined by 
employing the Mises yield criterion for plane stress, expressed 
as [2] 
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where σ1 and σ2 are the principal stresses given by [1] 
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      Substituting (54) and (55) into (57), introducing the results 
into (56), setting θp = 0°, and solving for r results in the plastic 
radii along the longitudinal direction of the crack associated 
with Mode I and II loadings: 



International Journal of Science and Engineering Investigations, Volume 2, Issue 19, August 2013 9 

www.IJSEI.com           Paper ID: 21913-01 ISSN: 2251-8843 

2

2

,
2 Y

I
Ip

K
r


                                                                     (58) 

2

2

,
2

3

Y

II
IIp

K
r


                                                                    (59) 

The superposition of rp,I and rp,II requires that rp is the 
greater value of (58) or (59). Given that the diagonal fatigue 
crack is inclined at an angle θ ≈ 45°, the Mode I loading 
predominates and the contribution of rp,II is superseded such 
that rp = rp,I. Substituting (50) into (58) and solving for τxy,s 
results in 
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where rp,cr is a predefined critical plastic radius along the 
longitudinal direction of the crack corresponding to the 
transition from LEFM to EPFM. It follows that the substitution 
of (60) into (44) results in the shear force capacity of a cracked 
web panel corresponding to the limit state of impending ductile 
failure. 

 

V. FINITE ELEMENT ANALYSES 

A. FE Model Overview 

A total of four trial web panels were modeled with 
ABAQUS 6.11 and employed to validate the shear force 
capacity expressions given by (42), (53), and (60). The widths 
and depths for all four trial panels were set as constant with s = 
102 cm and dw = 127 cm, respectively. Each panel was 
modeled with a different web panel thickness, tw, ranging from 
0.15 cm to 1.20 cm. A through-thickness diagonal crack was 
modeled in each panel with θ = 45°. The length of the crack, 
2a, in each panel was set to range from 10 cm to 70 cm. in 10 
cm increments. Also, the panels were modeled with the 
material properties of high-strength low-alloy structural steel. 
The geometrical and material properties of the trial web panels 
are listed in Tables I and II, respectively. 

TABLE I.  TRIAL WEB PANEL GEOMETRICAL PROPERTIES 

Trial Web Panel Thickness, tw (cm) 

WP-A 0.15 

WP-B 0.30 

WP-C 0.60 

WP-D 1.20 

 

TABLE II.  TRIAL WEB PANEL MATERIAL PROPERTIES 

Modulus of 

elasticity, E 

(GPa) 

Poisson’s 

ratio, ν 

Yield 

strength, 

σY (MPa) 

Mode I 

fracture 

toughness, KIc 

(MPa∙m1/2
) 

Mode II 

fracture 

toughness, KIIc 

(MPa∙m1/2
) 

200a 0.3a 345a 98b 74c 

  a. General properties of high-strength low-alloy structural steel [2]. 

b. Representative fracture toughness of high-strength alloy steel [57]. 
c. Assuming KIIc ≈ 0.75KIc [8]. 

The trial web panels with tw = 0.15 cm and tw = 0.30 cm 
(WP-A and WP-B) were purely theoretical for the purpose of 
investigating a broader range of potential elastic limit states. 
The panels were meshed using 4-node shell elements seeded at 
0.50 cm. The mesh was seeded at 0.05 cm near the crack tips. 
Also, the crack in each panel was modeled by assigning a seam 
to a single-line partition. 

For stress analyses, the increased rigidity along each panel 
perimeter caused by the flanges and stiffener plates was 
accounted for by modeling an outside margin of additional web 
plate, resolving the actual three-dimensional panel 
configuration into a two-dimensional configuration (see Fig. 
11a). The width of the outside margin, m, was approximated by 
setting the gross cross-sectional area of the margin equal to the 
gross cross-sectional area of the flange plate and solving for m, 
resulting in 

w

ff

t

tb
m                                                                            (61) 

where bf is the flange width and tf is the flange thickness. The 
flange thickness was assumed to be twice the web panel 
thickness such that tf = 2tw, thus transforming (61) into m = 
2bf. Furthermore, the flange width was assumed to be constant 
with bf = 35 cm. For buckling analyses, the outside margin of 
additional web plate was removed (see Fig. 11b). The crack 
was slightly shifted away from the corner of the web panel to 
allow the crack to behave as a central crack while remaining 
near to its original position relative to the panel perimeter. 

The perimeter of each panel was set to have simply 
supported boundary conditions restraining out-of-plane and in-
plane movement while allowing side-to-side movement (see 
Figs. 11a, b). Each trial web panel was then loaded under pure 
shear by applying shell edge loads along the perimeter of the 
panel margin (see Fig. 11a, b). The resulting capacities 
associated with shear yielding of the web, web local buckling, 
brittle fracture, and impending ductile failure were then 
numerically calculated for each trial web panel and compared 
to the capacities obtained from the analytical expressions. 

 

Figure 11.  (a) Trial web panel configuration for stress analyses, (b) trial panel 

configuration for buckling analyses. 

B. Web Local Buckling 

The trial web panel WP-C was first used to validate the 
expression for the internal shear stress distribution given by 
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(19). The uniform perimeter shear stress was set to τxy,s = 150 
MPa, the crack angle set to θ = 45°, and the crack length set to 
2a = 40 cm. Plots of the internal shear stress distributions were 
analytically determined using (19) for two arbitrary horizontal 
paths designated by τxy,c(x, 25 cm) and τxy,c(x, 40 cm) (see Fig. 
12). 

 

Figure 12.  Locations of horizontal paths in WP-C for which the internal shear 

stress distributions were analytically and numerically obtained. 

      The analytically determined shear stress distributions were 
compared to numerically calculated distributions by creating 
two nodal paths within WP-C in the locations designated in 
Fig. 12. The XY data for the in-plane shear stress was then 
requested for each of the nodal paths. The shear stress 
distributions as obtained from (19) and the FE analyses are 
plotted in Fig. 13. 

 

Figure 13.  Plots of internal shear stress distributions along the horizontal 

paths designated in Fig. 12 as obtained from (19) and FEA. The shear yield 

strength is temporarily neglected for the purpose of displaying the full extent 

of the stress distributions. 

The analytically and numerically determined shear stress 
distributions exhibit a closer correlation along y = 40 cm than 
along y = 25 cm. This suggests that (19) is more accurate in 

describing the mid-field and far-field shear stress distributions 
than in describing the near-field distributions. Nonetheless, 
(19) is conservative for both cases displayed in Fig. 13. 

All four trial web panels were next employed to directly 
validate the capacity expression for web local buckling given 
by (42). Each trial panel was loaded with a unit uniform 
perimeter shear stress, τxy,s = 1 MPa. A linear perturbation 
buckling analysis was then performed on each panel 
considering the different crack lengths ranging from 10 cm to 
70 cm. The resulting Mode I eigenvalues were divided by tw to 
obtain the critical values of τxy,s associated with buckling. The 
buckling capacities of the trial web panels as obtained from 
(42) with Ne = 100 and the FE analyses are plotted in Fig. 14 as 
functions of crack length. 

 

Figure 14.  Web panel buckling capacities as calculated from (42) and FEA. 

It is evident that the analytically and numerically 
determined web buckling strengths demonstrate a relatively 
close correlation for all crack lengths considered. Eq. (42) is 
slightly more conservative for crack lengths up to 40 cm. 
Conversely, the FE results are slightly more conservative for 
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crack lengths beyond 40 cm. From (43) and Table II, the shear 
yield strength is approximately τY = 200 MPa. In general, web 
panel strengths exceeding the shear yield strength are governed 
by τY. This is the case for the buckling strength of WP-D for 
shorter crack lengths, as demonstrated in Fig. 14. 

C. Shear Yielding 

The shear force capacity of a cracked web panel 
corresponding to the limit state of shear yielding is given by 
(46). Upon the advent of shear yielding, the perimeter shear 
stress attains the shear yield strength. Given that the trial web 
panels are loaded under pure shear by default, FE analyses 
were unnecessary to validate (47). 

D. Brittle Fracture and Impending Ductile Failure 

The trial web panels were next employed to indirectly 
validate the capacity expressions associated with brittle 
fracture and impending ductile failure given by (53) and (60). 
Specifically, the trial panels were used to confirm the accuracy 
of KI and the web panel brittle fracture strength corresponding 
to Mode I crack loading. Given that θ = 45°, KII remains 
negligible and the brittle fracture strength corresponding to 
Mode II crack loading approaches τcr = ∞. FE analyses were 
thus unnecessary to validate KII and the Mode II fracture 
strength. The Mode I fracture strength is analytically 
determined by solving (50) for τxy,s and setting KI = KIc, 
resulting in 

a

K Ic
cr




)2sin(
                                                            (62) 

      Since (53) and (60) are directly dependent upon the 
accuracy of KI, KII, and the Mode I and II web panel brittle 
fracture strengths, the validation of (62) serves to indirectly 
validate (53) and (60). 

The web panel brittle fracture strength was first numerically 
calculated for each trial web panel considering Mode I crack 
loading. This was performed by setting the shell edge load to a 
ramp load configuration. The magnitude of the shell edge load 
was set to an arbitrary value such that KI exceeded KIc. The 
total load time period was set to 10 and the load time 
incrementation set to 1. The stress intensity factor was obtained 
by assigning a history output request for KI at the crack front 
for each load time increment. Load scales were then obtained 
by dividing the load time increments at which KI equaled KIc 
by the total load time period. Lastly, the load scales were 
multiplied by the final magnitude of the shell edge load to 
obtain the critical magnitudes of perimeter shear stress. The 
Mode I brittle fracture capacities of the trial web panels as 
obtained from (62) and the FE analyses are plotted in Fig. 15 as 
functions of crack length. 

 

Figure 15.  Web panel brittle fracture strengths as calculated from (62) and 

FEA. 

It can be seen that the FE results correlate very well with 
the analytical results for all considered crack lengths. The 
accuracy of KI and (62) is thus confirmed, thereby providing 
indirect validation of (53) and (60). 

 

VI. RESULTS AND DISCUSSION 

Having validated (42), (53), and (60) with the FE analyses, 
the shear stress capacities and associated limit states of the trial 
web panels were further investigated. The web panel strengths 
associated with brittle fracture and shear yielding are 
independent of tw, and are plotted for all four trial panels in Fig. 
16 as functions of crack length. Conversely, the web panel 
strengths associated with buckling and impending ductile 
failure are dependent upon tw, and are plotted for each trial 
panel in Fig. 17 as functions of crack length with Ne = 100 and 
rp,cr = tw / 50 [58]. 
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Figure 16.  Web panel brittle fracture and shear yielding capacities for WP-A 

through WP-D. 

 

 

 

 

Figure 17.  Web panel buckling and impending ductile failure capacities for 

WP-A through WP-D. 

The limit states of brittle fracture and shear yielding do not 
govern the shear stress capacities of any of the trial web panels. 
Web buckling governs the capacity of WP-A for all considered 
crack lengths. Also, web buckling governs the capacity of WP-
B for crack lengths up to 2a ≈ 19 cm, with impending ductile 
failure governing thereafter. Similarly, web buckling governs 
the capacity of WP-C for crack lengths up to 2a ≈ 3 cm, with 
impending ductile failure governing thereafter. Impending 
ductile failure governs the capacity of WP-D for all considered 
crack lengths. 

It is noted that although impending ductile failure is a limit 
state in itself and signifies the invalidation of the brittle fracture 
limit state, the shear yielding and web buckling limit states 
may remain valid. With this in mind, it is observed that the web 
buckling capacities of the trial panels are significantly 
degraded with increased crack length. The trial panel buckling 
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strengths are degraded by as much as 30% when the crack 
length reaches 70 cm. 

The applicability of the shear force capacity expressions is 
finally demonstrated with a simplified plate girder design 
problem. In this particular example, load and resistance factors 
are neglected. An I-shaped transversely stiffened plate girder is 
to be designed to resist predominantly shear forces. The girder 
is required to have an unfactored shear force capacity of Vs = 
381 kN (see Fig. 1). The geometry and material properties of 
WP-C are initially selected for the design. From (1), the 
required perimeter shear stress capacity of WP-C is τxy,s = 50 
MPa. From Fig. 17, the provided perimeter shear stress 
capacity of WP-C is τcr = 52 MPa, governed by the limit state 
of web buckling. Substituting this value into (44) results in the 
provided shear force capacity of WP-C, given by Vcr = 396 kN. 
Since Vs = 381 kN < Vcr = 396 kN, the shear force capacity 
provided by WP-C is sufficient if the girder remains uncracked. 

The girder is now required to maintain a sufficient capacity 
for a prescribed diagonal fatigue crack configuration within a 
web panel so as to avoid the occurrence of elastic limit states in 
between bridge inspection periods (see Fig. 2). The prescribed 
crack length is assumed to be 2a = 50 cm and its angle of 
inclination is assumed to be θ ≈ 45°. From Fig. 17, the 
provided perimeter shear stress capacity when 2a = 50 cm is τcr 

= 10.7 MPa, governed by the limit state of impending ductile 
failure. However, neglecting impending ductile failure and 
considering only the web buckling limit state results in a 
provided perimeter shear stress capacity of τcr = 41.3 MPa. 
Substituting this value into (44) results in the provided shear 
force capacity of WP-C when 2a = 50 cm, given by Vcr = 315 
kN. Since Vs = 381 kN > Vcr = 315 kN, the shear strength 
provided by WP-C is insufficient for the prescribed crack 
configuration. Increasing the web panel thickness of WP-C 
from tw = 0.6 cm to tw = 0.7 cm and employing (42) with Ne = 
100 results in the modified perimeter shear stress capacity of τcr 

= 56.3 MPa. Substituting this value into (44) results in the 
modified shear force capacity of WP-C when 2a = 50 cm, 
given by Vcr = 501 kN. Since Vs = 381 kN < Vcr = 501 kN, the 
shear strength provided by WP-C with tw = 0.7 cm is sufficient 
for the prescribed crack configuration. It is noted that this 
design method of trial-and-error may be applied using load and 
resistance factors. 

 

VII. CONCLUSIONS 

Analytical expressions for the elastic shear force capacity 
of a cracked web panel corresponding to the limit states of 
shear yielding of the web, web local buckling, brittle fracture, 
and impending ductile failure were formulated. The 
expressions were specific to the case of a through-thickness 
fatigue crack initiating and propagating from a corner of a web 
panel at the junction of a flange and transverse stiffener plate 
with θ ≈ 45°. The expressions were validated with FE analyses 
and employed to investigate the residual cracked strengths of 
various web panel geometries. The governing limit states and 
associated strengths were found to be largely dependent upon 
the web panel thickness and crack length. Realistically 
proportioned plate girders were concluded to be governed by 

the web buckling limit state with impending ductile failure 
behaving as a secondary limit state.  

Overall, the capacity expressions may be applied in the 
design and analysis of I-shaped transversely stiffened plate 
girders loaded under predominantly shear considering 
prescribed diagonal fatigue crack configurations with θ ≈ 45°. 
Future work could include the performance of supplementary 
FE analyses to investigate the influence of the transverse 
stiffener plate spacings. Also, experimental tests could be 
performed on full-scale or small-scale pre-cracked plate girders 
to further validate the analytical expressions. Finally, advanced 
investigations could be undertaken to develop expressions 
considering the post-buckling behavior and tension field action 
of cracked web panels. 
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