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Abstract- The purpose of this paper was to overcome 
economic issue, which is one of the major barriers of the use 
of FRP in civil engineering.  The analysis of the methods of 
definition of elastic characteristics of separate layers 
reinforced by high-module fibers on the macro level is given. 
In the case, when the composite itself represents a set of layers 
with different directions of reinforce, the technique of the 
given elastic characteristics definition and component of 
matrixes of rigidity of all layers’ package as a whole is 
offered. 
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I. INTRODUCTION  

Composite is defined as a mechanically separable 
combination of two or more component materials, different at 
the molecular level, mixed purposefully in order to obtain a 
new material with optimal properties, different than the 
properties of the components (definition based on [1 -3]).  

Composite materials have been used in construction for 
centuries. One of the first was the use of straw as reinforcement 
in mud and clay bricks by the ancient Egyptians [4]. The 
combination of reinforcing steel and concrete has been the 
basis for a number of structural systems used for construction 
for the last century. The new class of composite materials, 
gradually gaining acceptance from civil engineers, both for the 
rehabilitation of existing structures and for the construction of 
new facilities, are fiber Reinforced Polymer composites, 
primarily developed for the aerospace and defense structures.  

Fiber Reinforced Polymer composites are the combination 
of polymeric resins, acting as matrices or binders, with strong 
and stiff fiber assemblies which act as the reinforcing phase 
[2]. The combination of the matrix phase with a reinforcing 
phase produces a new material system, analogous to steel 
reinforced concrete, although the reinforcing fractions vary 
considerably (i.e., reinforced concrete in general rarely 
contains more than 5% reinforcement, whereas in FRP 
composites, according to various sources [1 - 5], reinforcing 
volume fraction ranges from 30-70%).   

Although the steel reinforcement in concrete structure is 
protected by concrete, aggressive environmental condition can 
stimulate the carbonation of concrete and the formation of 
hydrated ferrous oxide in steel, resulting in spalling of concrete 
cover. The primary cause of deterioration of concrete pipe is 
the corrosion of steel reinforcement. Since FRP composite 
exercises high corrosion resistance, it can be used to replace 
steel reinforcement in the forms of rebars for flexural and shear 
reinforcements, and tendons for prestressing or post-tensioning. 
FRP rebar and tendon can take the form of one dimensional or 
multidimensional shape, depending on type of application. 
There have even been some attempts to incorporate wireless 
sensing into infrastructure using FRP reinforcement. However, 
there are several challenges in using FRP rebar and tendon. 
One issue is the linear elastic behavior of FRP rebar when 
loaded to failure. This means that concrete element reinforced 
using FRP rebar may not have the same ductile failure of steel-
reinforced element. Its lower modulus of elasticity also leads to 
serviceability problems, such as larger deflection and larger 
crack widths [2].   

The aim of this paper is to present FRP composites as the 
new material used for the purposes of civil engineering and 
prepare the state of the art in pipes structures using FRP 
composites for structural elements as the substitution of 
traditional materials. 

 

II. THEORETICAL BASES OF CALCULATION OF ELASTIC 

CHARACTERISTICS OF MULTILAYER MATERIALS 

For orthotropic material calculated according to the elastic 
properties of high-modulus steel layer have the form [6]: 
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       Where the subscript "в" refers to the reinforcement (steel), 

"м" refers to the binder (concrete); 
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1 , kk   - the relative 

volume content reinforcement layer in the direction of axes (1) 

and (3) (see Fig. 1). Shear modulus of the steel and concrete 

are determined by the dependencies 
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         Where: 
мв  , - Poisson's ratio coefficient of 

reinforcement
)(

1

k , which characterizes the relative volume 

content of steel, can be determined by the formula: 
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Where: )(kh  – thickness of the reinforced layer, )(k
Bd - 

steel diameter; 
)(к

Bi –  frequency of reinforcement 
)(

3

к  

determined using empirical relationships and, as typically, 

changes in the interval )(

1

)(

3 )15,005,0( кк   . 

      The geometry of the reinforced layer is shown in (Fig. 

1.a). All quantities with index (K) refers to the K- layer shell. 

Elasticity relationships for an orthotropic unidirectional 

reinforced layer in its axis of symmetry,  taking into account 

physical and technical constants (1) - (3) in matrix form are as 

follows: 
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column matrix of stress and strain layer in the direction of 

axes of symmetry 1 , 2  (Fig. 1, b); 
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Matrix stiffness and pliability K - rank orthotropic layer in 

the direction of symmetry axes 1 , 2   respectively. 

 

 
a)                                    b) 

 
Figure 1 Unidirectional steel reinforcement scheme 

 

Solving two systems of equations (4) with respect to 

stiffness
)k(

ija , we can find the following relations: 
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If the thick-walled element consists of a unidirectional 

reinforced layers, the axis of local coordinate systems that do 
not coincide with the axes of the global coordinate system, that 
is, for example, in cross-reinforced shells, it is possible to vary 
the material properties due to the angle of reinforcement 

Let   - the angle between the axes of symmetry k  – layer 

shell  )(
1
k ,  )(

2
k  and the directions of coordinate lines )(

1
k , 

)(
2
k , т.е. corner reinforcement. It is known that in the rotated 

axes (  )(
1
k ,  )(

2
k , z) reinforced layer has anisotropic 

properties and has one plane of elastic symmetry. Then 

becoming fair ratio of elasticity: 
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Matrix of stiffness coefficients k  – rank of an anisotropic 

layer in the direction of the major coordinate lines ;, 21   
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In the case where the composite is a set of n different 

oriented layers of unidirectional material contained elastic 

characteristics of the package layers are the obvious with 

relations: 
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Substituting 
11
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


E  in the first equation of the system 

of equations (11) and pre-expressing strain 123322 ,,   

with assistance 11 from the remaining (3-x) equations (11), it 

is easy to find the value 1E : 
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Poisson's ratios. The remaining three values of Poisson's 

ratio 323121 ,,   re using the well-known relations 

)3,2,1,(  jiEE ijijij  .                                (16) 

Here, the first index of the Poisson coefficient indicated a 

direction of load application; the second one demonstrated a 

direction of the lateral deformation, which was induced by this 

force. 

On the basis of the proposed algorithm, using an applied 

packet of PC MATHCAD 14 programs, we obtained 

numerical values of elastic characteristics of the reinforced 

material. 

 

III. STRESSED STATE OF MULTI-LAYERED CYLINDERS 

UNDER ACTION OF INTERNAL PRESSURE. 

 

In [7], a solution of a problem of a stress-deformed state of 

an anisotropic cylindrical shell of a finite length induced by an 

action of internal and external hydrostatic pressure for the case 

of state without moment was proposed to be solved similar to 

a solution of Lame problem for a thick-wall isotropic cylinder.  

Under an action of only internal pressure p, expressions for 
solution of lame problem for a thick-wall isotropic 

cylinder. Under an action of only internal pressure 

P, expressions for normal pressure tangents for a 

cylindrical coordinate system (Fig. 2) should be 

written as: 
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Where zr   ,,  normal stresses respectively in the 

radial, circumferential and longitudinal directions; rzz  ,  

shear stresses in the circumferential and radial directions; 

21, rr  inner and outer radii of the cylinder; 21 rr   – 

coordinate of the cylinder; )6,...,2,1,(b jiij – 

coefficients compliance matrix reinforced material and that are 

associated with coefficients stiffness matrices (10) relations 

b = 1)(a 

 ,     
3b = 1

3)(a 
 . 

       In addition, in (17) - (20) introduces additional notation:      
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Dependences (17) to (21) were derived taking into account 

an assumption that an elastic symmetry, which was 

perpendicular to a normal to a middle cylinder surface, was 

present in every point of the cylinder. In this case of 

anisotropy, under an action of a normal pressure, the thick-

wall cylinder will not only change the curvature radii of 

transversal cross-sections but also change the initial length and 

be whirled. 
 

     Employing formulas (17) to (21), to derive the values of 

maximal and minimal stresses taking place at points of the 

internal and external surfaces of the considered cylinder seems 

to be not complicated ( 1r ,  2r ).  We should like to 

note that calculating the stressed state of anisotropic 

cylindrical shells employing the formulas (17) to (21), 

theoretical result for thin-walled cylinders could be derived 

with a practically assumed accuracy( 8,0/ 21 rr )  . In this 

case, the indicated dependences do not allow one to determine 

changes of the cylinder stressed state induced by a presence of 

material inter-phase structure defects and an influence of 

conditions of ends fixation. 
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Figure 2  Design scheme of the pipe in a cylindrical coordinate system 

 

IV. MATERIALS PROPERTIES 

A fiber is a material made into a long filament. According 
to [5], a single fiber usually has a diameter up to 15 um. 
Bigger diameters generally increase the probability of surface 
defects. The aspect ratio of length and diameter can be ranging 
from thousand to infinity in continuous fibers. They usually 
occupy 30-70% of the volume of the composite and 50% of its 
weight.   

The main functions of fibers are to carry the load and 
provide stiffness, strength, thermal stability and other 
structural properties to the FRP [2]. To perform these 
functions, the fibers in FRP composite must have high 
modulus of elasticity, high ultimate strength, low variation of 
strength among fibers, high stability of their strength during 
handling and high uniformity of diameter and surface 
dimension among fibers.   

Basically, the properties of FRP reinforced composites 
depend on the properties of its components, their volume ratio, 
the orientation of the fibers in the matrix and properties of the 
fiber-matrix bond [8].  

The type of fibers used as the reinforcement is the basics 
for classification of FRP composites. There are three types of 
fibers dominating civil engineering industry: glass, carbon and 
aramid fibers. The table below presents properties of various 

kinds of fibers.  Econcret = 30 GPa, υconcret = 0.43 number 

of fiber glass layers 21 . Properties of glass, aramid and 
carbon fibers (Table.1),  Comparison of properties of various 
construction materials to FRP composites (Table.2). 

 

TABLE 1 PROPERTIES OF GLASS, ARAMID AND CARBON FIBERS [5] 

 
 

TABLE 2 COMPARISON OF PROPERTIES OF VARIOUS CONSTRUCTION 

MATERIALS TO FRP COMPOSITES [5] 
 

 
 

V. RESULTS AND DISSECTION 

On the basis of the presented calculation models and 
techniques, which were developed for calculation of such 
class of problems, the stressed state of the concrete and steel 

cylinder, which had the internal surface radius мr 9,01    , 

was studied. The shell was fabricated by reeling up a single-
directed glass strip. As a whole, such cylindrical shell was 
composed of 2 single-directed layers. The reeling angle of 
every layer was determined using a code of material structure. 
Totally, 10 versions of the shell reinforcing were considered 
(Table.3). 

 

TABLE 3 THE STRUCTURE OF THE LAMINATE PIPE. 
 

NO. Code 

1 [ 010
°
/0¯

°
]S 

2 [ 0° / 30°/0° / 30°/0° / 30°/0° / 30°/0° / 30°/0¯°]S 

3 [ 0° / 45°/0° / 45°/0° / 45°/0° / 45°/0° / 45°/0¯°]S 

4 [ 0° / 60°/0° / 60°/0° / 60°/0° / 60°/0° / 60°/0¯°]S 

5 [ 0° / 75°/0° / 75°/0° / 75°/0° / 75°/0° /75°/0¯°]S 

6 [ 0° / 90°/0° / 90°/0° / 90°/0° / 90°/0° / 90°/0¯°]S 

7 [ 0° / ±30°/0° / ±45°/0° / ±60°/02° /0¯°]S 

8 [ 02° / ±30°/0° / 02°/ ±60°/02° /0¯°]S 

9 [ 02° / ±45°/0° / 02°/ ±90°/02° /0¯°]S 

10 [ 0° / 15°/0° / 30°/0° /45°/0° / 60°/0° / 75°/0¯°]S 

 
Thickness layer is δ = 1.9 mm the other characteristics of 

the monolayer components are carbon earlier. 

For any given structure of concrete and steel were found 
physical and mechanical characteristics as a composite 
material with one plane of elastic symmetry (Table 4). In this 
Cartesian coordinate system (Fig. 1) is replaced by a 
cylindrical (Fig. 2). 
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TABLE 4 THE ELASTIC CONSTANTS OF FIBER AND CONCRETE. 
 

 
    Values of normal and tangential stresses at points of the 

internal and external cylinder surface under internal pressure 

intensity MPаq 40   are presented in (Table. 5) Analysis 

of results demonstrated that a changed code did not practically 

influence the values of normal stresses in a circle 

direction  . In this case, an essential change of stress values 

z of a transversal shear z  and normal axial stresses 

z took place. 
Studies, which were performed for a stressed state of 

multi-layered shell having [ 02° / ±45°/0° / 02°/ ±90°/02° 

/0¯°]S code, when the layer thickness was successively 

increased till a given value (Fig. 3 – 5), are of interest. As a 

whole, the shell thickness was determined by an expression 

12rh r . The value 2r   shown in Fig. 3 – 5, a value of the 

shell internal surface did not change and was equal 

to мr 9,01  . Elastic constants for the presented set of layers 

did not depend on the shell thickness. 

 

TABLE 5 STRESS STATE OF THICKNESS CYLINDER (H = 40 MM)  

 

 

Figure 3 Relation between stress z  and thickness of the pipe 

 

 

 

Figure 4 Relation between stress 
z  and thickness of the pipe 

 

 

 
Figure 5 Relation between stress    and thickness of the pipe 

 

 

We should like to note that the increased shell thickness 

did not practically change a difference of normal stresses   

in the circle direction at points of the internal and external 

surfaces. So, for example, if the shell thickness was 

мм40hr-r 12  , this difference was 35MPa, if it was 
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мм80hr-r 12  , the difference was 45MPa.  Analyzing 

dependences of z  stresses on the shell thickness, one could 

notice that in anisotropic shells, when r/h>20, essentially high 

stress values z  arose. Such stresses could be a reason for 

destruction of the binder in a considered reinforced material. 

In this case, conditions for an ideal contact between the layers, 

which were considered in a continuous-structure theory of 

anisotropic plates and shells turned out to be essentially 

violated. 

 

VI. CONCLUSIONS 

The paper proposed a method for determining the elastic 
constants of anisotropic material, which consists of a set of 
reinforced layers. Reviewed ten variants of multilayer 
anisotropic hollow cylinders with different structure 
reinforcement. For each variant of reinforcement to determine 
the stress state of the cylinder under the action of internal 
pressure. It is shown that with increasing thickness of the 
membrane normal stress in direction θ (σθ)  increase but 
normal stress in direction z (σz) decreases. 

 

VII. SUMMARY 

The analysis of separate layers reinforced by high-module 
fibers on the macro level elastic properties definition methods 
is offered. In the case when a composite is a set of layers with 

different re-enforcement directions, methodology of 
determination the reduced elastic properties over all layers in 
package in tote is offered. The deflected mode of multi-
layered hollow cylinder with the different variants of re-
enforcement of its separate layers under internal pressure is 
analyzed.  
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